“Functional Movement Screen”

Applicazione e contestualizzazione dello strumento, attraverso l’analisi dei dati ottenuti, per la prevenzione degli infortuni in campo riabilitativo

Lavoro di Tesi (Bachelor Thesis)

Romina Sangiacomo Gordillo

Direttore di tesi: Luca Zanardi

Manno, 2018
Il termine sport deriva dal latino “deportare” ovvero portarsi lontano, che sta a significare “uscire fuori dalle mura cittadine per svolgere attività fisiche”, intesa come evasione dalla quotidianità.

Lo sport, quindi, è un’attività ricreativa che da sempre fa parte della vita dell’uomo, diventando oggi un elemento essenziale per la socializzazione, poiché lo sport mira alla partecipazione ed interazione nel gruppo. Tuttavia, se un’attività sportiva entra in contatto con due culture differenti, diventa un fattore che lega. Essa ha la capacità di mettere tutti gli uomini sullo stesso piano, di far crescere in loro una passione comune.
ABSTRACT

Background
La pratica di un’attività sportiva oltre a portare benessere generale e a garantire uno stile di vita sano, comporta anche dei rischi. Oggi giorno la necessità di prendere a carico nel miglior modo un atleta è sempre più richiesto, visti gli innumerevoli infortuni registrati nel corso degli anni. Il lavoro da me svolto si basa sulla ricerca e l’analisi dei dati del “Functional Movement Screen” (FMS), uno strumento adoperato per la prevenzione degli infortuni negli sportivi. Gli obiettivi dello strumento FMS sono individuare i deficit funzionali legati alle debolezze propriocezionali, di mobilità, di stabilità e del controllo motorio attraverso una valutazione basata sul movimento per poi risolvere con un programma di esercizi le asimmetrie e le limitazioni gravi che sono identificate dal un punteggio più basso. L’identificazione del rischio di infortuni e l’attuazione di misure appropriate di prevenzione aiutano l’intero team a diminuire il tempo di stop e i costi di assistenza sanitaria.

Obiettivi
L’obiettivo da raggiungere con questo lavoro è definire se lo strumento possa essere utile in campo riabilitativo, specialmente in quello fisioterapico, dando la mia opinione sul suo utilizzo. Per raggiungere questo scopo ho dovuto introdurre lo strumento e il programma FMS, osservare e descrivere la parte pratica in cui è stato utilizzato lo strumento con una squadra di basket, e individuare i punti di criticità e i vantaggi attraverso la teoria e l’analisi dei dati.

Metodi
Il metodo adoperato, oltre a una parte teorica in cui la ricerca di evidenze scientifiche è stata fondamentale, concerne di uno studio di casi realizzato tramite l’applicazione dello strumento a 14 giocatori di basket professionisti (età compresa tra i 17 e 32 anni). È stata creato e consegnato loro un questionario il cui obiettivo era indagare sugli infortuni passati e specialmente su quelli inerenti la stagione 2016/2017. I giocatori sono stati sottoposti a due sessioni di screening, il primo nel periodo pre-stagionale e il secondo a fine stagione. Durante questo periodo gli atleti hanno eseguito gli esercizi correttivi individualizzati forniti dal programma e sono stati da me registrati gli eventuali infortuni che soddisfacevano i criteri definiti.

Risultati
L’analisi dei dati ha evidenziato che nessuno strumento è tutt’oggi in grado di prevedere il rischio di infortunio, vista la laboriosità nell’eseguire uno studio e la complessità di definire i fattori di rischio. Si è riscontrato che il test FMS non è in grado di predire con precisione il rischio di infortuni, ma ha identificato i punti carenti di ogni giocatore. Inoltre si è constatato che il programma FMS degli esercizi correttivi ha migliorato il movimento e ha diminuito le limitazioni nei giocatori.

Conclusioni
I dati raccolti permettono di escludere il pieno affidamento dello screening, visti i punti critici rilevati e la poca attendibilità. Un fisioterapista che segue una squadra di un determinato sport può però utilizzare questo strumento nel percorso del ragionamento clinico, poiché permette di avere dei parametri di rivalutazione ed associato a una serie di valutazioni, consente un approccio migliore al paziente sportivo.
SOMMARIO

ABSTRACT ... 3

1. INTRODUZIONE .. 6
 1.1 Motivazione e scelta del tema .. 6
 1.2 Scopo e obiettivi .. 6
 1.2.1 Obiettivi del progetto ... 6
 1.2.2 Obiettivi personali .. 7

2. METODOLOGIA DELLA RICERCA ... 8
 2.1 Descrizione dettagliata del progetto ... 9
 2.2 Creazione del questionario ... 10

3. QUADRO DI RIFERIMENTO TEORICO .. 11
 3.1 Sport e prevenzione .. 11
 3.1.1 Fattori di rischio ... 12
 3.1.2 Controllo posturale .. 13
 3.1.3 Programmi per ridurre il rischio di infortuni .. 15
 3.2 Infortuni sportivi in Svizzera .. 16
 3.2.1 Infortuni nel basket in Svizzera .. 18
 3.3 Functional Movement System ... 19
 3.3.1 Functional Movement Screen (FMS) .. 20
 3.3.1.1 La nascita dell’FMS e i suoi obiettivi .. 20
 3.3.1.2 I 7 item correlati allo sviluppo psicomotorio .. 23
 3.3.1.3 Applicazione ... 23
 3.3.1.4 Scheda di valutazione e punteggio ... 24
 3.3.1.5 Indicazioni per amministrare l’FMS .. 25
 3.3.1.6 Risultati della valutazione .. 25
 3.3.1.7 Creazione degli esercizi correttivi ... 26
 Algoritmo per le strategie correttive ... 26
 Ciclo di allenamento FMS ... 27
 3.3.1.8 Piramide della performance ... 28
 3.3.1.9 Apprendimento motorio ... 31

4. Analisi dati ... 32
 4.1 Analisi dei questionari e infortuni .. 32
 4.2 Risultati dopo i primi screening FMS ... 38
 4.3 Stagione “2016/2017” e “2017/2018” a confronto dopo l’introduzione dell’FMS 38
5. Discussione ... 41
 5.1 Applicazione del test FMS ... 41
 5.1.1 Affidabilità .. 41
 5.1.2 Capacità .. 41
 5.1.3 La validità e la correlazione con sensibilità e specificità .. 42
 5.2 L’FMS nella programmazione degli esercizi correttivi .. 43
 5.3 L’FMS e i suoi punti critici nell’applicabilità in campo riabilitativo 45
 5.4 I vantaggi dell’utilizzo dell’FMS in campo riabilitativo .. 49
6. Conclusioni ... 51
7. Ringraziamenti ... 53
8. Bibliografia ... 54
 8.1 Libri ... 54
 8.2 Articoli ... 54
 8.3 Letteratura grigia .. 56
 8.4 Iconografia .. 57
9. Allegati ... 58
 9.1 Allegato 1 - Questionario .. 58
 9.2 Allegato 2 - Infortuni non professionali in Svizzera ... 62
 9.3 Allegato 3 – Infortuni nel basket: costi .. 63
 9.4 Allegato 4 – Dati generali sugli infortuni nel basket in Svizzera 64
 9.5 Allegato 5 – I 7 Item ... 67
 9.6 Allegato 6 – Analisi questionari seconda parte .. 74
 9.7 Allegato 7 – Programma di esercizi correttivi .. 75
 9.8 Fotografie .. 78
1. INTRODUZIONE

1.1 Motivazione e scelta del tema

Fin da quando ero bambina ho sempre nutrito una grande passione per l’attività fisica, iniziando così, all’età di 8 anni, la ginnastica attrezzistica, alla quale però, nel corso degli anni successivi, ho sempre affiancato discipline di svariato genere. Grazie allo sport ho sviluppato buone capacità coordinative, di mobilità, forza e resistenza oltre ad avere imparato a non arrendersi mai davanti a delle difficoltà o a degli infortuni, come mi è personalmente successo con degli incidenti di lieve entità durante tutto il mio percorso sportivo. Nel corso della mia “carriera” sportiva, inoltre, ho avuto anche la possibilità di confrontarmi con diversi atleti, alcuni dei quali erano capaci di fare bene il loro sport, ma non appena venivano sottoposti a qualsiasi altro test, come per esempio di mobilità o coordinazione, mostravano risultati scadenti.

Oggigiorno, con il gran numero di partecipanti all’attività fisica, si presenta una maggiore quantità di lesioni e a tal proposito, mi sono sempre chiesta quanto potesse influenzare la mobilità, la forza, la coordinazione e le asimmetrie nella prestazione sportiva e nel rischio di infortuni, la quale previsione è tanto importante quanto la loro valutazione e il loro trattamento (Cook, Burton, & Hoogenboom, 2006b) (Shojaedin et al., 2014). Anche determinare la capacità di un individuo a partecipare ad eventi sportivi richiede un’attenta valutazione (Shojaedin, Letafatkar, Hadadnezhad, & Dehkhoda, 2014).

A questo riguardo scaturiscono quindi le seguenti domande della mia ricerca:

a. Esiste uno strumento di valutazione che possa migliorare la prevenzione degli infortuni?
b. Un movimento di scarsa qualità può aumentare il rischio di infortunio e diminuire la prestazione fisica?

Questo progetto di tesi, dunque, tratta il tema della riabilitazione sportiva proponendo uno strumento di supporto per la prevenzione degli infortuni nel mondo dello sport, il quale, a mio parere, è un argomento di attualità e per il quale bisognerebbe investire tempo e risorse. Per svolgere questo scritto mi sono affidata principalmente a un sistema che adopera uno strumento di screening, ovvero il “Functional Movement Screen” (FMS), il quale può essere potenzialmente adoperato per prevedere lesioni o infortuni prima dell’inizio di una stagione, e migliorare i movimenti rendendoli più dinamici e funzionali.

1.2 Scopo e obiettivi

1.2.1 Obiettivi del progetto

L’obiettivo di questa tesi è quello di verificare l’applicabilità in ambito riabilitativo e soprattutto fisioterapico riscontrata anche nella letteratura inerente al test FMS, il quale viene definito uno strumento di screening funzionale affidabile per la pratica clinica nella valutazione del controllo posturale e neuromuscolare di singoli soggetti volgendo all’identificazione del rischio d’infortunio (Cuchna et al., 2016; Sahijwala et al., 2016; Cook et al., 2006a; Cook et al., 2006b).
Il mio compito è quindi verificare se esso può essere un valevole e utile strumento in ambito riabilitativo per valutare il paziente sportivo e per prevedere il rischio di infortuni. Per raggiungere questo obiettivo svolgerò i seguenti punti:

1. Introduzione dello strumento e del programma FMS

2. Osservazione e descrizione della parte pratica in cui si utilizza lo strumento e si registrano gli infortuni della stagione 2016/2017 e stagione 2017/2018

3. Constatazione della valenza medica del test FMS e della sua applicabilità in ambito riabilitativo nel prevedere gli infortuni e nell’efficacia del programma attraverso la teoria, l’esperienza vissuta e le mie conoscenze

Al termine di questa analisi, mi auspico di saper dire se il sistema potrà essere utile nel campo riabilitativo oppure se sarà necessaria una parte metodologica supplementare.

1.2.2 Obiettivi personali

La scarsa comunicazione tra fisioterapisti, preparatori atletici e allenatori è al giorno d’oggi un problema frequente poiché, in assenza di un linguaggio comune, le diverse professioni tendono a lavorare autonomamente senza poter garantire una piena presa a carico del paziente. Dal momento in cui vi è sempre il rischio, dopo un infortunio, di avere delle recidive, oppure di non guarire mai completamente, lo scopo comune dovrebbe essere quello di assicurare che non ci siano fattori di rischio all’interno del movimento dell’atleta.

Come citato nel codice deontologico, la professione di fisioterapista offre prestazioni volte a prevenire malattie e infortuni, a curare persone malate o infortunate aiutando il paziente a mantenersi in buona salute. A tale riguardo i miei obiettivi principali sono presentare il sistema e strumento FMS al fine di riuscire a migliorare la comunicazione e la collaborazione tra le diverse figure sanitarie e sportive, dimostrando se l’uso di esso in ambito clinico possa migliorare la presa a carico del paziente. Inoltre, mi piacerebbe ampliare il livello di conoscenza di questo strumento sul territorio ticinese, ed investigare eventuali punti di forza e/o debolezza, con la speranza di trovare un largo consenso dello strumento proposto per un futuro inserimento nella pratica fisioterapica.

Con la stesura di questa tesi vorrei migliorare la mia capacità di ragionamento clinico e d’osservazione mettendo in pratica quanto imparato durante i miei anni di studio. Oltre a ciò, spero anche di avere la possibilità di ampliare le mie conoscenze crescendo non solo dal punto di vista personale, ma anche da quello professionale attraverso l’approfondimento autonomo di un argomento per me molto interessante. Avendo l’opportunità di stare a fianco di sportivi d’élite, vorrei avvicinarmi alla riabilitazione nell’area sportiva, seguendo le partite e i rientri a seguito di infortuni. Vedere la collaborazione multi-professionale che si crea all’interno di una squadra e avendo un approccio diretto con i giocatori, mi permetterà sicuramente di sperimentare l’aderenza degli atleti al progetto.
2. METODOLOGIA DELLA RICERCA

Per poter elaborare al meglio la mia tesi, mi sono occupata principalmente, oltre alle mie conoscenze in ambito fisioterapico, di due aspetti fondamentali: la ricerca di evidenze scientifiche nell’utilizzo dell’FMS nel mondo dello sport e nelle persone attive attraverso l’utilizzo di banche dati e l’approfondimento dell’FMS attraverso la lettura di diversi capitoli del libro di Gray Cook, creatore dello strumento e di tutto il sistema FMS.

Concernente il primo punto, ho deciso di adoperare la seguente strategia:

- **Parole chiave**: Functional movement screen, Functional movement system, injury risk, prevention, functional performance assessment, pre-participation physical examination, injury prediction, injury prevention

- **Banche dati**: Cinhal, Pubmed, PEDro, Up to date, Google Scholar, Cochran

- **Operatori booleani**: AND, OR

- **Criteri di inclusione**: almeno due parole chiave, free text, dal 2006 ad oggi, studi pubblicati in inglese, studi che hanno valutato tutti e 7 i movimenti del test FMS come descritto da Cook et al. 2006, studi che hanno utilizzato il sistema di punteggio come descritto da Cook et al. 2006, review, metanalisi, clinical trial, studi che indagano la validità del test FMS in persone attive fisicamente (militari, poliziotti, pompieri), atleti amatoriali, professionisti, squadre sportive

- **Criteri di esclusione**: meno di due parole chiave, prima del 2006, studi in altre lingue, practice guidelines

Dopodiché il disegno di ricerca che ho scelto per questo lavoro è stato di tipo case-report, ovvero lo studio di casi, avvalendosi di una narrazione dettagliata di un progetto e affinché possa trovare una risposta pertinente alle domande che mi sono posta durante la scelta del tema di tesi, è necessario che il problema clinico venga trasformato in una domanda precisa (Fig.1).

![Figura 1 – Quesito clinico](image)
Formulazione del quesito clinico attraverso il sistema PICO
2.1 Descrizione dettagliata del progetto

Grazie all’opportunità datami dal mio allenatore Antonello che si occupa di allenamenti funzionali per la preparazione di Spartanrace nella palestra Mt. Ashes e Stonesport di Taverne, ho avuto l’occasione di poter assistere alla sua presa a carico di una squadra di Basket, ovvero la SAM di Massagno, una squadra che gioca nella Lega nazionale di serie A (LNA).

A partire dal mese di giugno Antonello ha cominciato a seguire la preparazione atletica dei giocatori decidendo di mettere in pratica il sistema FMS su tutta la squadra, che nel mese di settembre ha cominciato la nuova stagione 2017/2018, concludendola poi a maggio 2018.

Al primo incontro con i giocatori, dopo la mia presentazione e la spiegazione del mio progetto, che comprende 2 sessioni di screening con l’ausilio del sistema FMS, ho per prima cosa consegnato loro il questionario cartaceo, che una volta compilato, mi è stato ritornato. Durante la preparazione fisica di giugno, luglio ed agosto, è avvenuta la prima sessione di screening in cui ogni atleta ha ricevuto il proprio programma personalizzato in base al punteggio ottenuto dall’ FMS, programma che è stato aggiornato ogni 4 settimane affinché gli esercizi potessero diventare più complessi o venir cambiati con lo scopo di permettere un miglioramento dell’atleta. La seconda ed ultima sessione di screening ha avuto luogo a maggio a fine stagione.

Ho deciso in comune accordo con Antonello di svolgere le valutazioni con il test FMS il prima possibile in modo da poter individuare i punti deboli e classificare i diversi modelli di movimento di ogni singolo giocatore, questo è stato fatto con l’aiuto del suo apprendista ed io sono stata presente alle valutazioni in modo da poter osservare e dare il mio parere.

In media i giocatori svolgono 6 allenamenti di basket alla settimana Massagno della durata di 2 ore più la partita che dura 1 ora e mezza. In aggiunta hanno a disposizione 3 allenamenti con Antonello alle 9.00 del mattino, i giocatori sono abbastanza liberi nel decidere quando recarsi. Alcuni di loro sono professionisti, come ad esempio gli stranieri, mentre altri hanno un altro lavoro, di conseguenza sono un po’ più limitati nel tempo a disposizione.

Prima di iniziare il mio lavoro di tesi Antonello ed io abbiamo discusso su come avremmo gestito l’intero programma FMS e gli allenamenti, giungendo alla conclusione che una volta stabiliti i punteggi si inizierebbe con la programmazione fisica includendo il lavoro sui deficit riscontrati dai 7 item, oltre a ciò, in contemporanea, si lavorerebbe sulla condizione, resistenza, esplosività e forza. L’allenamento di 1 ora e mezza è strutturato nel seguente modo: dopo il riscaldamento comune dedicheranno 10 minuti agli esercizi specifici dati dal programma FMS, poi si lavorerà sulla forza ed agilità, concludeando con esercizi di allungamento.

Attraverso l’analisi dei dati ricavati, l’aiuto della letteratura e delle nozioni da me apprese, potrò concludere il lavoro con la mia visione personale su tutto il programma. Il mio obiettivo principale è riuscire a consigliare o meno questo strumento per la pratica clinica, affermando se possa essere adeguato e/o vantaggioso in ambito riabilitativo. Quelli a seguire sono tutti i passaggi che mi sono prefissata di valutare prima di giungere a una conclusione.
Tabella 1 - Obiettivi e provvedimenti del progetto

<table>
<thead>
<tr>
<th>Obiettivo</th>
<th>Provvedimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrivere l’applicazione e l’analisi dei dati</td>
<td>Parte teorica: studio della letteratura e analisi</td>
</tr>
<tr>
<td>- Del test FMS come strumento predittivo degli infortuni</td>
<td>Parte pratica:</td>
</tr>
<tr>
<td>- Dell’intero sistema nella prevenzione degli infortuni</td>
<td>- Confronto del punteggio iniziale del test (ottenuto durante la preparazione fisica) con gli infortuni che avverranno durante l’intera stagione (da settembre a maggio 2017/2018)</td>
</tr>
<tr>
<td>- Confronto del numero di infortuni della stagione scorsa con quella attuale</td>
<td>- Confronto del punteggio dei singoli giocatori ottenuto a inizio stagione con quello ottenuto a fine stagione</td>
</tr>
<tr>
<td>Contestualizzare</td>
<td>Parte teorica: studio del libro e conoscenze acquisite. Motivare l’uso del test attraverso i suoi punti critici e punti favorevoli</td>
</tr>
<tr>
<td>- Lo strumento FMS come screening di valutazione</td>
<td>Parte pratica: paragonare il punteggio dei singoli giocatori ottenuto a inizio stagione con quello ottenuto a fine stagione</td>
</tr>
<tr>
<td>- Il programma di esercizi correttivi dati dal sistema FMS in ambito riabilitativo</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Creazione del questionario

Per poter registrare gli infortuni della stagione passata 2016/2017, ho deciso di allestire un questionario semi strutturato (ricerca quantitativa e qualitativa), suddiviso in tre parti, con lo scopo di approfondire diversi aspetti riguardanti i giocatori di basketball della SAM (Allegato 1).

La prima parte, ovvero quella più generale, richiedeva dati di tipo anagrafico, oltre al ruolo del giocatore, da quanto tempo giocava e gli sport praticati precedentemente.

La seconda, cioè già più specifica, riguardava l’anamnesi remota degli infortuni, ciò quegli infortuni avvenuti durante tutta la carriera sportiva. Qui veniva richiesto di specificare la zona dell’infortunio, la diagnosi, quando è avvenuto, la dinamica, la durata dello stop e la riabilitazione svolta.

Nella terza parte del questionario, quella più rilevante per il mio lavoro, si chiedevano esplicitamente più informazioni sulla particolare stagione 2016/2017. Si ponevano domande inerenti all’impegno sportivo che era richiesto, quale fosse la durata degli allenamenti e quanti minuti venissero giocati ad ogni partita. In aggiunta, per registrare gli infortuni (in caso ci fossero stati), la tipologia di trauma subito, la dinamica, il tempo di riposo dall’attività fisica, una lieve descrizione di come questo si fosse verificato, il trattamento affrontato e se fosse stato effettuato o programmato un eventuale intervento chirurgico. Inoltre, mirava a ricavare informazioni riguardanti l’impatto del fisioterapista, degli allenatori, di altre figure nel trattamento dell’infortunio e se fossero stati eseguiti esercizi di prevenzione o di potenziamento mirati durante gli allenamenti.
3. QUADRO DI RIFERIMENTO TEORICO

3.1 Sport e prevenzione

“L’attività fisica ha molti benefici per la salute, inclusi la riduzione del rischio di mortalità e un effetto protettivo” (Agresta, Slobodinsky, & Tucker, 2014)

Praticare uno sport può essere un’esperienza positiva per tutte le fasce d’età, in quanto migliora la forma fisica, la coordinazione, aumenta l'autostima e porta benessere generale. Oggi giorno vi è un aumento della partecipazione sportiva e da esso deriva la necessità di una specifica assistenza sanitaria legata alle esigenze dell'atleta.

La prima componente del processo di assistenza sanitaria per gli atleti inizia con l’esame fisico di pre-partecipazione (PPE) ad una stagione sportiva (Sanders, Blackburn, & Boucher, 2013). La PPE fornisce alla squadra l'opportunità di effettuare un esame approfondito per avere un’idea delle risorse disponibili e dovrebbe consentire un feedback di qualità a tutti: giocatori, allenatori e altre figure che costituiscono il team. Esso contribuisce alla prevenzione degli infortuni e al miglioramento della performance (Sanders et al., 2013).

La valutazione degli atleti per il rischio di infortuni durante un PPE è estremamente utile e importante perché dà alla squadra l'opportunità di ridurre tali rischi e di garantire la salute e la sicurezza degli atleti (Shojaedin, Letafatkar, Hadadnezhad, & Dehkhoda, 2014). Dato che la letteratura non ha ancora identificato i dati per sostenere un approccio specifico o per stabilire le migliori pratiche per l'identificazione dei fattori di rischio, le domande continuano: “Qual è il processo più efficace? Chi dovrebbe condurre le valutazioni? Quando e dove dovrebbero avvenire? Possiamo identificare i fattori di rischio in modo soddisfacente per prevenire le lesioni?” (Sanders et al., 2013).

Attraverso i test fisici si raccolgono informazioni quantitative di base, per dare consigli e stabilire gli obiettivi con gli atleti, fornendo però solo informazioni oggettive che non riescono a valutare l'efficienza con cui gli individui eseguono determinati movimenti. Le raccomandazioni si basano quindi, su informazioni normative standardizzate, che potrebbero non essere relative alle esigenze specifiche di un individuo. Tutti i programmi prescritti di resistenza e di condizione spesso funzionano per migliorare l'agilità, la velocità e la forza senza considerare la perfezione o l'efficienza del movimento funzionale sottostante (Cook, Burton, & Hoogenboom, 2006a).

Negli ultimi 20 anni, la riabilitazione sportiva si è concentrata sulla valutazione isolata, sull’approccio funzionale incorporando i principi di facilitazione neuromuscolare proprioceziva (PNF), sulla sinergia muscolare e sull'apprendimento motorio (Cook et al., 2006a). Tuttavia, è difficile sviluppare e fare riferimento a protocolli "funzionali" quando non esiste uno standard di valutazione. In molte situazioni i professionisti della riabilitazione tendono ad eseguire specifici test isolati e oggettivi per le singole articolazioni e muscoli, sottoponendo gli atleti a prestazioni sportive e valutazioni di abilità specifiche senza prima esaminare il movimento funzionale. La prevenzione agli infortuni è una delle responsabilità primarie del personale della medicina sportiva a tutti i livelli di sport (Kiesel, Plisky, Voight, & others, 2007). Il professionista che prende a carico l’atleta prima di farlo rientrare in campo deve preparare l'individuo a un'ampia varietà di attività e per farlo occorre rivalutare i movimenti funzionali (Cook et al., 2006a). La valutazione
dei movimenti funzionali attraverso un approccio più adeguato ha il potenziale di concentrarsi sulla modifica dei modelli di movimento sportivo piuttosto che concentrarsi solo su muscoli o articolazioni specifiche (Yeung, Cleves, Griffiths, & Nokes, 2016).

3.1.1 Fattori di rischio

In molte situazioni non esiste nessun modo per sapere se l’individuo rientra nella categoria di rischio di infortuni o meno, e dunque, a meno che non siano individuati marcatori specifici per ciascun individuo, determinare chi è predisposto a lesioni è molto difficile (Cook et al., 2006b; Meeuwisse, 1991). Nonostante siano stati studiati gli effetti di variabili antropometriche, ovvero il rischio di infortuni attraverso la valutazione di mobilità, di propriocezione, di forza asimmetrica e del punteggi del movimento funzionale, ancora nessuno studio ha incorporato tutti questi aspetti (Yeung et al., 2016; Cook et al., 2006a). Oggi i fattori di rischio che contribuiscono ad aumentare gli infortuni sono svariati come: gli infortuni precedenti, l’indice di massa, la flessibilità muscolare, la biomeccanica durante i movimenti atletici, la lassità legamentosa, la limitata gamma di movimenti, i bassi livelli di idoneità aerobica o di forza muscolare, lo scarso equilibrio, la diminuzione della frequenza di attività fisica e gli esercizi fisici praticati in passato (Bond et al., 2017; Shojaedin et al., 2014).

Murphy et al. hanno recentemente rivisto la letteratura, concludendo che le cause degli infortuni sportivi non è tutt’ora chiara e gli studi sono molto limitati. Si è giunti all’accordo che sono necessari ulteriori studi prospettici con un adeguato design e una dimensione del campione sufficientemente grande (R. Bahr & Holme, 2003).

I fattori di rischio sono tradizionalmente divisi in due categorie:
- **Fattori di rischio interno** (intrinseci/intrapersonali): legati all’atleta
- **Fattori di rischio ambientali** (estrinseci/extrapersonali): esterni all’atleta

Un punto importante è che i fattori di rischio possono essere suddivisi ulteriormente in fattori modificabili e non modificabili. Sebbene i fattori di rischio non modificabili come il sesso e l’età possano essere meno influenzati, come minimo è importante studiare i fattori potenzialmente modificabili e renderli adatti attraverso l’allenamento fisico o altri approcci. Tuttavia, stabilire i fattori di rischio interni ed esterni non è sufficiente. Per avere in chiaro le cause devono essere anche identificati i meccanismi con cui si verificano.

Gli studi sull’eziologia degli infortuni sportivi richiedono un modello dinamico che tenga conto della natura multifattoriale e che prenda in considerazione la sequenza degli eventi che portano a un infortunio. Uno di questi modelli dinamici è descritto da Meeuwisse nel 1994 (Fig.2) nel quale espone come interagiscono più fattori per produrre una lesione.

Egli classifica i fattori di rischio, come:
- **Interni**: sono fattori predisponenti che agiscono e che possono essere necessari, ma raramente sufficienti per produrre lesioni
- **Esterni**: sono fattori abilitanti in quanto facilitano la manifestazione della lesione, agiscono sull’atleta dall’ambiente
- **Evento incitante**: evento che determina la situazione dell’infortunio

È la presenza dei primi due fattori che rende l’atleta suscettibile agli infortuni e solitamente la presenza di uno solo dei fattori non è sufficiente. La somma di questi fattori di rischio e l’interazione tra loro prepara il giocatore all’infortunio che poi si verifica in una
determinata situazione, ovvero nell’evento incitante, il quale rappresenta l’ultimo anello della catena.

Secondo Meeuwisse è necessario ampliare l’approccio tradizionale alla descrizione dell’evento scatenante l’infortunio. Egli asserisce che non basta il termine per definire il meccanismo della lesione (biomeccanica), come ipotesi di una distorsione della caviglia in inversione, ma per essere completo deve tener conto di tutti gli eventi che hanno portato alla situazione in cui si è verificato l’infortunio. Ad esempio, si include la situazione di gioco, la posizione nel campo, l’interazione con gli altri giocatori, il movimento eseguito dallo stesso giocatore (esercizio o nome dell’abilità). Egli sostiene che descrivere solo l’infortunio del legamento LCA come una lesione da contatto fornisce informazioni significative, ma ti lascia lontano dall’avere una completa comprensione dell’evento scatenante. Egli conclude affermando che se si viene a conoscenza di queste informazioni sarà più facile applicare un programma riabilitativo adeguato e prevenire lesioni, rispetto a una descrizione biomeccanica esatta del movimento articolare (R. Bahr & Holme, 2003).

Figura 2 - Modello dinamico e multifattoriale sull’eziologia degli infortuni sportivi

3.1.2 Controllo posturale

Il controllo posturale è definito come la capacità di controllare la posizione del corpo nello spazio in relazione a due obiettivi: stabilità e orientamento (Horak & Macpherson, 1996).

Il termine *orientamento posturale* descrive sia l’allineamento biomeccanico del corpo che l’orientamento del corpo rispetto all’ambiente (capacità di mantenere il corpo in relazione con l’ambiente). Per la maggior parte dei compiti funzionali, manteniamo un orientamento verticale del corpo. Nel processo di creazione di un orientamento verticale, utilizziamo molteplici riferimenti sensoriali, tra cui: la gravità (il sistema vestibolare), l’interrelazione di diversi segmenti corporei, la relazione del nostro corpo con la superficie di supporto (sistema somatosensoriale) e il rapporto del nostro corpo con gli oggetti nel nostro ambiente (sistema visivo).
Il termine **stabilità posturale**, detta anche equilibrio, rappresenta la capacità di controllare il centro di massa in relazione alla base del supporto. Il centro di massa (COM) è definito come un punto al centro della massa corporea totale, che viene determinato individuando la media ponderata della COM di ciascun segmento corporeo. È stato ipotizzato che la COM sia la variabile chiave controllata dal sistema di controllo posturale. La proiezione verticale della COM è definita come il centro di gravità (COG). La base del supporto (BOS) è definita come l’area del corpo che è in contatto con la superficie di supporto.

Il controllo posturale, come tutti gli aspetti del controllo motorio, emerge da un’interazione tra l’individuo, il compito e l’ambiente (Fig. 3). La capacità di controllare la posizione del nostro corpo nello spazio emerge da una complessa interazione di sistemi muscolo-scheletrici e neurali, collettivamente denominati "il sistema di controllo posturale".

Il controllo posturale non è regolato da un sistema unico, bensì dall’interazione di diversi sistemi (Fig. 4), ecco il motivo per cui viene nominato sistema di controllo posturale, il quale è costituito da:

- **Componenti muscolo-scheletrici**: includono elementi come la mobilità articolare, la flessibilità, le proprietà muscolari e le relazioni biomeccaniche tra i segmenti corporei
- **Componenti neurali**: includono i **processi motori**, ovvero le sinergie muscolari; **processi sensoriali / percettivi**, che coinvolgono l’organizzazione e l’integrazione di sistemi visivi, vestibolari e somatosensoriali; e **processi di livello superiore**, essenziali per mappare la sensazione dell’azione e assicurare aspetti anticipatori e adattativi del controllo posturale.

Il termine **processi neurali di livello superiore** non necessariamente significa controllo cosciente. Gli aspetti cognitivi di livello superiore del controllo posturale sono la base per gli aspetti adattativi e anticipatori. Altri aspetti della cognizione che influenzano il controllo posturale includono processi come l’attenzione e la motivazione.

Pertanto, in un approccio sistemico, il controllo posturale risulta essere il risultato di una complessa interazione tra molti sistemi corporei che lavorano in modo cooperativo per
controllare sia l’orientamento che la stabilità del corpo. L’organizzazione specifica dei sistemi posturali è determinata sia dal compito funzionale che dall’ambiente in cui viene eseguito. Tutta questa complessità rende difficile riuscire a definire le cause di un movimento sbagliato o le cause di un infortunio.

Figura 4 – Modello del controllo posturale

3.1.3 Programmi per ridurre il rischio di infortuni

Come abbiamo appena visto il rischio di infortuni muscolo-scheletrici è multifattoriale, ma nonostante questo è stato dimostrato che esistono determinati programmi che possono essere utili per la prevenzione. Secondo l’autore Yeung, un programma di mobilità pre stagionale ha questa capacità (Teyhen et al., 2012; Yeung et al., 2016). A tal proposito, questi studi suggeriscono che la preparazione atletica alla stagione e l’esecuzione giornaliera di esercizi di mobilità potrebbero essere utili per prevenire i danni. È stato anche accertato che un’implementazione di un allenamento propriocettivo, il quale permette di sentire il proprio corpo muoversi nello spazio, aumenta tutte le misure di indicatori fitness e riduce l’incidenza di infortuni (Yeung et al., 2016).

Lephart et al. (1997) suggeriscono che a causa di lesioni o interventi chirurgici il meccanismo di feedback neuromuscolare si interrompe, quindi i programmi di riabilitazione dovrebbero essere progettati includendo una componente propriocettiva che integri i diversi livelli del controllo motorio. Un tale programma è altamente raccomandato per promuovere la stabilità dinamica articolare e funzionale. La corretta gestione delle lesioni correlate all’atleta e delle lesioni ortopediche può essere complessa nel contesto della medicina sportiva; infatti, uno degli aspetti più impegnativi per il clinico è la comprensione del ruolo del controllo neuromuscolare mediato dalla propriocezione. La propriocezione contribuisce alla programmazione motoria per il controllo neuromuscolare necessario per i movimenti di precisione e contribuisce anche al riflesso muscolare, fornendo stabilità dinamica articolare. Ad esempio, il doppio effetto del trauma dei legamenti, ovvero la instabilità meccanica e il deficit di propriocezione contribuiscono alla instabilità funzionale, la quale con il tempo può portare a microtraumi o a una recidiva.
Per ottimizzare i programmi di trattamento è necessario avere delle conoscenze riguardanti la ricerca attuale sulla propriocezione e basarsi sull’esperienza di trattamenti passati (Lephart et al., 1997).

È stato constatato inoltre che gli effetti di un allenamento neuromuscolare riducono il numero di infortuni. È importante considerare che alcuni sport presuppongono delle capacità unilaterali che consistono in vie di movimento asimmetriche, poiché la maggior parte dei giocatori ha un arto dominante che preferisce e questo crea una forza asimmetrica negli arti inferiori. La forza asimmetrica è stata precedentemente proposta come un possibile identificatore del rischio di lesioni ed è risultato essere associato negativamente con lesioni nelle estremità inferiori (Yeung et al., 2016).

Infine, dato che la valutazione delle prestazioni non offre test prevedibili e funzionali che possano aiutare a identificare le debolezze negli individui, numerosi professionisti della medicina sportiva hanno suggerito la necessità di identificare tecniche di valutazione che utilizzino un approccio funzionale al fine di identificare i deficit di movimento, uno tra questi è il Functional Movement Screen (FMS). Recentemente numerose società mediche hanno collaborato e tentato di stabilire una maggiore uniformità in questo settore, tuttavia sono stati forniti solo suggerimenti. Ideалmente, la collaborazione dovrebbe avvenire anche tra le diverse figure per determinare quale sia la linea di base del movimento fondamentale che l’atleta dovrebbe possedere (Cook et al., 2006a).

Le strategie di prevenzione degli infortuni e la riabilitazione dopo lesioni sono complesse, richiedendo conoscenze, esperienze specialistiche degli allenatori e dei professionisti sanitari (Yeung et al., 2016).

3.2 Infortuni sportivi in Svizzera

Secondo le statistiche basate sugli ultimi dati della SUVA (Anno 2011-2015) il 36% degli infortuni non professionali totali si verifica durante lo sport e i giochi (Fig.5).

In particolare, il 39% degli incidenti sportivi si verifica durante la pratica di uno sport con la palla e il 26% durante lo sport invernale (Fig.6). Tra gli incidenti con la palla sportiva, il 64% si verifica durante la pratica del calcio. Questa quota è rimasta molto stabile negli ultimi dieci anni. Nel 54% degli incidenti di calcio, le vittime soffrono di dislocazione o distorsione e nel 26% dei casi si tratta di trauma non significativo. Solo l’11% degli incidenti calcistici causa fratture. Al calcio seguono la categoria dell'hockey su prato e in roller, l'unihockey e la categoria della pallavolo, che rappresentano ciascuno il 7% degli incidenti sportivi con la palla. Negli anni tra il 2006 e il 2015, gli incidenti nella categoria "Altri sport con la palla" sono aumentati.
Anche per quanto riguarda i giovani tra i 15-24 e 25-34 anni, gli incidenti sportivi con la palla sono i più comuni. Il numero di incidenti verificatisi durante la pratica di questo sport diminuisce drasticamente con l'età, mentre quello degli incidenti invernali rimane stabile fino all'età di 54 anni aumentando poi con l'età. Allo stesso modo, anche la proporzione degli incidenti di sport di montagna aumenta con l'età. Il numero di incidenti di ginnastica rimane invece relativamente costante (Fig. 7).

Nelle figure 8 e 9 sono rappresentate le incidenze di infortunio secondo il sesso e l'età dell'individuo. Nella figura 6 è interessante osservare come oltre il 50% degli infortuni si verifica durante lo sport negli uomini sotto i 25 anni, poi la quota di incidenti sportivi diminuisce con l'età. Nella figura 7, per quanto riguarda le donne è curioso invece osservare come all'età di 24 anni gli incidenti sportivi sono quelli più diffusi e similmente agli uomini gli infortuni sportivi diminuiscono con l'età, mentre aumenta la percentuale di infortuni in casa e nei terreni privati.
Questi numeri forniscono principalmente informazioni sulle discipline in cui ogni fascia d'età trascorre più tempo. Sfortunatamente, non si può trarre conclusioni sui rischi inerenti a ciascun esercizio, perché non si hanno dati precisi sul tempo trascorso da tutti gli assicurati per ciascuna attività. Si è constatato però, che i giovani sono infortunati più spesso durante la pratica di uno sport, ma non è chiaro se il più veterano semplicemente fa meno sport o se lo fa nella stessa quantità, ma con l'adozione di un atteggiamento più cauto contro i rischi e di conseguenza ci sono meno infortuni. Inoltre, è evidente che tra le donne gli incidenti sportivi sono più distribuiti tra diversi tipi di sport rispetto agli uomini.

3.2.1 Infortuni nel basket in Svizzera

Nel 2015 gli infortuni dovuti allo sport sono stati di 186'027 e al primo posto si trovavano gli sport con la palla 70'583 (Allegato 2).

Come vediamo nella figura 10, sempre nel 2015, lo sport con la palla che ha provocato nettamente più infortuni è stato il calcio (45'322), seguito dall' hockey e unihockey, dalla pallavolo e in quarta posizione dal basket. Infine, la pallamano, il tennis e il badminton. Gli infortuni nel basket, come riportato nella figura, nel corso degli anni sono rimasti abbastanza stabili con un leggero aumento nel 2015.
Per quanto riguarda gli infortuni nel basket, le zone del corpo più colpite da infortuni sono: al primo posto gamba, caviglia e piede con la percentuale del 38,7%, a seguire polso, mano e dita 24,6%, ginocchio 11,5%, viso, naso e orecchie 5,4% e infine spalla e omero 4,2%.

Dalle percentuali analizzate (Allegato 3) gli infortuni al ginocchio sono quelli che hanno un costo maggiore 40,6%, a seguire le lesioni agli arti inferiori (gamba, caviglia e piede) 32,2%, polso, mani e dita 10,9%, spalla e omero 7,3%.

Per quanto riguarda la dinamica del trauma (Allegato 4) il 46% degli infortuni è causato da una scivolata, da una caduta (fattore intrapersonale), il 37% riceve un colpo, cade (fattore extra-personale); il 19% va a sbattere contro qualcosa, viene toccato (fattore extra-personale); l'11% è causato da un sovraccarico (improvviso o da accumulo), infine il 2,5% è dovuto all'inciampare in qualcosa. La causa nell'infortunio per il 45% degli incidenti non coinvolge nessun oggetto, mentre per il 30% coinvolge un'altra persona (avversari, compagno di squadra), e per il 17% è attribuito alla palla, alle variabili della palestra o a un oggetto sportivo.

Gli infortuni maggiori avvengono nella fascia d'età i tra 15-29 anni, a seguire con il 36% tra i 30-44 anni, poi con l'8,8% 45.59 anni, e lo 0,8% dai 60 anni in su (Allegato 4).

3.3 Functional Movement System

"Una cosa è sicura: il movimento detta il nostro modo di vivere (tutto il giorno, ogni giorno) e lo prendiamo molto sul serio. Dal 1995, la nostra missione a FMS è che tutti si muovano bene e si muovano spesso (Cook, 2010)."

Il Functional Movement System, introdotto per la prima volta nel 2001 da Gray Cook e descritto più in dettaglio nel 2006, ha modificato il paradigma dello screening introducendo una valutazione dei movimenti fondamentali (Bond et al., 2017). Il Functional Movement System è stato costituito per migliorare la portata complessiva delle prestazioni, della riabilitazione fisica e della gestione del rischio di infortuni tra le persone attive (Cook, 2010). L’intento è quello di dare un sistema migliore alla medicina sportiva, al fitness e ai professionisti dell’allenamento, affinché si possano identificare le disfunzioni del movimento e migliorare la comunicazione tra i professionisti. Gray Cook iniziò a metà degli anni 90 a creare un approccio più olistico alla riabilitazione funzionale.
Egli pensò che fosse necessario analizzare le sequenze di movimento fondamentale. Durante questo processo cominciò a formulare un modo sistematico per valutare gli schemi di movimento dando origine a quello che oggi è il Selective Functional Movement Assessment (SFMA). Questo processo di valutazione SFMA, però, era stato creato per la valutazione di pazienti o persone che già lamentavano dolore. L’obiettivo, quindi, non era quello, bensì creare un processo di selezione che permettesse di impostare facilmente una linea di referenza dei movimenti fondamentali, i quali dopo essere stati osservati, permettessero di prendere delle decisioni su come migliorare il piano individuale di allenamento oppure davanti a una disfunzione di movimento rilevato, intervenire il più presto possibile, cercando un approccio più dinamico difronte a una disfunzione di movimento. Questo è stato il concetto che ha permesso di creare come ultima analisi il “Functional Movement Screen” (FMS), ovvero lo “Scrutinio dei Movimenti Funzionali”.

A differenza della valutazione del movimento della SFMA, l’FMS non è un sistema diagnostico. Il Functional Movement System ha quindi sviluppato due differenti tipi di programmi motori: quello generale FMS e quello specifico SFMA, di conseguenza se si riscontra un problema nello screening generale sarà positivo anche quello specifico.

Medici, figure sanitarie, allenatori, preparatori atletici condividono lo stesso obiettivo: far in modo che il corpo umano funzioni al meglio con un minimo rischio di infortuni (Cook, 2010). Cook riconosce due problemi che allontanano queste professioni dal raggiungimento dell’obiettivo: da una parte, secondo lui, non tengono conto della qualità del movimento dell’individuo e dall’altra non hanno una lingua comune per comunicare tra di loro. Tutte queste figure tendono a trascurare il movimento fondamentale che comporta un maggiore rischio di lesioni, dolori e prestazioni inefficienti che potrebbero essere evitate. Si concentrano troppo spesso, invece, sulla forma fisica, sulla performance e sulla struttura senza eseguire uno screening della disfunzione del movimento che potrebbe causare dei compromessi nel gesto tecnico portando poi in futuro a una lesione. Un rapporto di fiducia tra atleta, allenatori, fisioterapisti e medici garantisce una migliore presa a carico e permette di ottenere anche migliori risultati. A questo proposito può essere utile disporre di uno strumento che offra una procedura operativa standard e un linguaggio comune per lo screening (la valutazione) e la correzione dei movimenti da utilizzare sia in palestra che in ambito riabilitativo, permettendo di identificare al meglio i potenziali rischi e di creare programmi di riabilitazione ed esercizi migliori basati sul profilo di movimento di ciascun individuo (Cook, 2010). Di protocolli e programmi se ne hanno a sufficienza, Cook ha cercato di costruire un sistema con il consiglio e l’aiuto dei migliori professionisti che conosceva creando un sistema operativo standard per i movimenti fondamentali, un sistema che aiutasse a misurare la qualità del movimento prima di misurare la quantità di movimento.

3.3.1 Functional Movement Screen (FMS)

3.3.1.1 La nascita dell’FMS e i suoi obiettivi
L’FMS è nato nel 2010 quando il suo ideatore, Gray Cook ha scritto il libro “Movement - Functional Movement Systems: Screening, Assessment and Corrective Strategies” con Lee Burton e Kyle Kisel. Gray Cook ha studiato fisioterapia a Miami ottenendo il certificato di Orthopedic Clinical Specialist presso l’“American Physical Therapy Association” e il certificato di “Strength and Conditioning Specialist”. Da oltre 8 anni insegna e tiene conferenze a livello nazionale e internazionale nei settori della fisioterapia, della medicina sportiva e del miglioramento delle prestazioni fisiche. Grazie alla carriera da fisioterapista,
Cook a cominciato ha riflettere sui movimenti e sull’esercizio da molte prospettive diverse. Le sue competenze in ambito ortopedico erano rinforzate dall’applicazione dei principi basi della cinesiologia e della biomeccanica, anche lo studio della neurologia, che lo appassionava molto, gli ha permesso di riflettere e comprendere il movimento con i suoi diversi problemi. Durante lo studio della facilitazione propriocettiva neuromuscolare (PNF) ha iniziato a vedere il movimento come diversi modelli interconnessi e ha compreso che la riabilitazione ortopedica convenzionale non stava incorporando i principi neurologici allo stesso livello della biomeccanica. Gli esercizi e le tecniche neurologiche sono state progettate per migliorare tutti i tipi di movimento. L’obiettivo è facilitare gli stessi attraverso tecniche che includono: il movimento passivo, il movimento attivo assistito, la stimolazione tattile e verbale, la posizione del corpo, la lieve resistenza per creare una irradiazione, il controllo del respiro e altre forme di stimolazione, le quali sono tutte basate sulla visione naturale di movimento e controllo del movimento.

Il motivo che ha portato Cook a proporre il sistema FMS in modo non diagnostico è stata l’osservazione di diverse tappe dello sviluppo nei bambini, le quali portano al miglioramento del controllo del movimento e l’osservazione dello stesso movimento sportivo con la considerazione degli innumerevoli movimenti a spirale e diagonale che avvengono nella pratica dell’attività fisica.

Durante lo sviluppo dello screening, lui e i suoi colleghi volevano semplicemente standardizzare il movimento, nonostante fosse facile cadere nei test di prestazione fisica e nei test diagnostici. A tal proposito, l’FMS ha voluto identificare i problemi del movimento per inserirli in un sistema di classificazione. In particolar modo, gli screening e le valutazioni che Cook riporta nel suo libro riguardano i pattern di movimento fondamentali che supportano i movimenti delle attività di tutti i giorni aiutando a ricostruire una base di movimenti funzionali generali nei pazienti prima della specializzazione del movimento, indipendentemente dalla tipologia di popolazione e dall’attività. L’FMS è un sistema di valutazione e di classificazione del movimento, esso definisce 7 item (Figura 11 e Allegato 5) che illustrano i movimenti fondamentali, il controllo motorio all’interno delle sequenze di movimento e la competenza nei movimenti di base che il corpo umano dovrebbe essere in grado di eseguire (Cook, 2010).

![Figura 11 – I 7 item del test FMS](image)

Gli item dell’FMS richiedono un equilibrio tra mobilità e stabilità (ovvero i due elementi fondamentali per il movimento umano). Attraverso l’analisi del movimento si determina le asimmetrie, il dolore dell’atleta, la forza muscolare, la stabilità dell’articolazione...
dell'estremità inferiore in diversi piani di movimento, la flessibilità muscolare, l'equilibrio e la propriocezione (Shojaedin et al., 2014). La complessità del sistema di collegamento cinetico rende difficile la valutazione delle debolezze usando metodi convenzionali e statici. Per questo motivo, è necessario utilizzare test funzionali che incorporano l'intera catena cinetica per isolare le carenze del sistema (Nadler et al., 2002; Meeuwisse, 1991). I 7 item del test FMS sono infatti stati creati sulla base della conoscenza dei principi propriocettivi e cinestetici. Ogni test è un movimento specifico, che richiede una funzione appropriata del sistema cinetico del corpo (Cook et al., 2006a) ed è progettato per identificare i modelli di movimento di compenso che possono sviluppare gli individui. I movimenti tentano di sfidare la capacità del corpo di effettuare il movimento attraverso la sequenza prossimale-distale. Questa linea di movimento nella catena cinetica permette al corpo di produrre pattern di movimenti molto più efficienti. Stabilendo una linea di base di movimento corretto, il sistema consente quindi di prendere la decisione più adeguata, se il soggetto sottoposto al determinato movimento lamenta dolore, si decide di continuare con una valutazione clinica; invece, se il dolore non è presente, dato la presenza di deficit o carenze che possono essere trascurate nella popolazione attiva (presentandosi in modo asintomatico) (Shojaedin et al., 2014), si continua con un semplice esercizio correttivo basato sulla disfunzione del pattern osservato, riducendo così il rischio di lesioni. Per quanto riguarda l’esercizio correttivo, i creatori dell’ FMS hanno anche sviluppato una serie di esercizi prescritti in base al livello e al tipo di pattern di movimento errati raggiunti durante l'esecuzione del FMS e identificati dal punteggio FMS di ogni individuo (Shultz, Anderson, Matheson, Marcello, & Besier, 2013). Gli inventori dell’FMS suggeriscono che non è necessariamente importante decidere quale fattore sia la causa, ma è più importante rendersi conto che esiste un problema e bisogna affrontarlo (Brown, 2011). A questo proposito è stato osservato che molti individui che praticano sport ad alti livelli durante la valutazione FMS non sono in grado di riprodurre questi semplici movimenti. Questi individui adoperano modelli di movimento errati con compensi durante le loro attività, sacrificando movimenti efficienti con quelli inefficienti per raggiungere alti livelli (Cook et al., 2006a).

Dato che i pattern di movimento errati a lungo andare cooperano a provocare lesioni muscolo scheletriche, l'identificazione di essi e l'attuazione di misure preventive contribuiscono a ridurre il rischio e a migliorare le prestazioni atletiche (Bond et al., 2017; Cook et al., 2006b). Questi, vengono corretti concentrandosi sul modello e non sulle singole parti focalizzandosi su un approccio efficace per molti problemi di movimento senza essere destinato ad un'utilizzo diagnostico, ma piuttosto per dimostrare limiti o squilibri rispetto ai modelli di movimento umano. Una volta trovata la più grande asimmetria o carenza, se necessario si possono usare test e scrutini aggiuntivi per essere più precisi (Cook, 2010).

Quando i movimenti imitano mosse atletiche, si tratta di una coincidenza perché non è uno strumento di allenamento né uno strumento che deve creare competizione, ma è puramente usato per la valutazione e la classificazione del movimento funzionale (Cook, 2010). Come spiega Cook nel suo libro, la forza e la potenza non si realizzano senza un movimento efficiente, essere forti non ha significato senza la fluidità e l'efficienza del movimento. Questo sistema ha reso possibile l'apprezzamento del movimento fondamentale e l’efficienza ed efficacia del movimento (Cook, 2010).
3.3.1.2 I 7 item correlati allo sviluppo psicomotorio

I pattern di movimenti corretti sono stati formati inizialmente durante la crescita e lo sviluppo psicomotorio. Per crescere, tutti gli esseri umani devono raggiungere determinate tappe dello sviluppo motorio. Quest’ultimo avviene da prossimale a distale: il bambino impara a stabilizzare prima le articolazioni prossimali, incomincia quindi con il controllo della testa, del tronco e dopo le articolazioni distali delle estremità. Progressivamente ci muoviamo, rotoliamo, strisciiamo, gattoniamo, ci inginocchiamo, ci appoggiamo in piedi, iniziando con i primi passi, poi camminare, arrampicarsi e correre. Quando una di queste tappe del movimento primario viene a mancare porta inevitabilmente a limiti di movimento o disfunzioni a causa del ritardo nella completa maturazione del sistema. Questi movimenti originali e funzionali rappresentano la base della mobilità e la stabilità nei segmenti mobili del corpo che lavorano insieme per creare il movimento. Non si tratta di forza, potenza, resistenza o agilità, la funzione di base è ciò che supporta questi attributi. I modelli di movimento funzionali danno le basi per le abilità di movimento più elevate. In questo modo consideriamo la qualità prima della quantità. Solo dopo aver sviluppato una padronanza o controllo dei pattern/modelli generali di movimento si potrà esaminare, valutare e controllare specifici movimenti. Durante la crescita e lo sviluppo, i propriocettori di un individuo vengono sviluppati attraverso movimenti riflessi per svolgere i compiti motori di base. Un aspetto importante del nostro sistema è proprio questa capacità propriocettiva del corpo che è definita come una variazione specializzata della modalità sensoriale del tatto, che comprende la sensazione del movimento articolare e il senso di posizione articolare (Lehnhart et al., 1997). I propriocettori in ogni segmento della catena cinetica devono funzionare correttamente per far sì che si verifichino schemi di movimento efficienti. Con il progredire della crescita e dello sviluppo, il processo da prossimale a distale diventa funzionante e poi tende a invertirsi in un processo di regressione in cui il movimento si evolve lentamente in una direzione contraria. Questa retrogradazione si verifica in ogni individuo in modo differente nelle abilità e nei movimenti specifici (Cook et al., 2006a).

3.3.1.3 Applicazione

Per preparare un atleta all’ampia varietà di attività necessarie per praticare il proprio sport, l’analisi dei movimenti fondamentali dovrebbe essere incorporata nella preparazione fisica prima della stagione (PPE) in modo da determinare se l’atleta ha i movimenti essenziali necessari per partecipare all’attività sportiva con un rischio di infortuni ridotto (Cook et al., 2006a; Sahijwala et al., 2016). Lo strumento di valutazione è quindi utile per gli screening di pre-stagione e anche come prova di performance poiché valuta la capacità funzionale e dinamica degli individui, e aiuta a identificare i pattern dolorosi e le disabilità di movimento (Cook et al., 2006a; Brown, 2011; Frost, Beach, Campbell, Callaghan, & McGill, 2015).

La valutazione complessiva si esegue ponendo i pazienti in posizioni in cui eventuali debolezze, squilibri, asimmetrie e limitazioni diventano evidenti agli operatori sanitari e ai trainers qualificati.

Gli stessi autori Cook e Brown evidenziano che uno strumento di screening come questo offre un approccio diverso alla prevenzione delle lesioni e alla prevedibilità della performance. In aggiunta, se viene usato come parte di una valutazione globale, l’FMS porterà raccomandazioni individuali, specifiche e funzionali per i protocolli di preparazione fisica (Brown, 2011).
3.3.1.4 Scheda di valutazione e punteggio

Per ognuno dei 7 test si utilizza un foglio di valutazione (Fig.12), che è stato progettato per essere semplice e per non creare confusione.

Punteggio:
- 3 punti, esecuzione della sequenza motoria senza compensi
- 2 punti, esecuzione con compensi di vario tipo
- 1 punto, impossibilità ad eseguire la sequenza motoria
- 0 punti, dolore indipendentemente dalla qualità del movimento

Per ulteriori chiarimenti consultare Allegato 5, nel quale sono descritti tutti i 7 movimenti con i propri criteri di valutazione e anche i tre Clearing test ovvero un esame ulteriore che verifica la presenza o meno di dolore.

La maggior parte delle attività di movimento funzionale viene valutata bilateralmente (destra e sinistra) e viene nominata Raw Score, ovvero il punteggio crudo. Per identificare i modelli asimmetrici e il punteggio complessivo (Final score) viene utilizzando il punteggio più basso ottenuto dal paziente. Il punteggio totale (Total Score) che un individuo può ricevere è di massimo 21 punti e minore è questo punteggio, maggiore è il rischio di infortuni per il soggetto valutato.

<table>
<thead>
<tr>
<th>TEST</th>
<th>RAW SCORE</th>
<th>FINAL SCORE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep squat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurdle step</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inline lunge</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder mobility</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder clearing test</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active straight- leg raise</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk stability push up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension clearing test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotatory stability</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion clearing test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL SCREEN SCORE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 12– Scheda di valutazione FMS
3.3.1.5 Indicazioni per amministrare l’FMS

Punti anatomici di riferimento: spina iliaca anteriore superiore (SIAS), rotula, tuberosità tibiale, malleolo laterale e mediale, piega cutanea distale del polso.

Posizionamento: è consigliato stare un passo indietro rispetto al paziente per creare una distanza sufficiente che consenta di vedere l’intera immagine in una volta sola.

Movimento: il paziente ha tre tentativi per eseguire ogni test, quindi la persona che lo testa può muoversi e osservare da diversi punti. A seconda del test, stare al lato o di fronte può fornire un miglior punto di osservazione.

Calzatura: si consiglia all’individuo di indossare le scarpe con le quali più frequentemente si allenà. L’obiettivo infatti è quello di riprodurre le condizioni coerenti ed affidabili dal primo FMS ai successivi di controllo.

Riscaldamento: lo scrutinio viene eseguito senza riscaldamento o stretching o movimenti di preparazione. È importante sapere in che cosa consiste lo stato naturale del movimento della persona stessa, senza alcun tipo di facilitazione. In questo modo si avrà la migliore indicazione sulla competenza della qualità e del livello di movimento della persona che sperimenta nelle sue attività della vita quotidiana.

Istruzioni verbali: le istruzioni verbali devono essere utili al paziente per assumere una appropriata posizione iniziale e per eseguire il movimento corretto. Devono essere informazioni sufficienti per comprendere come eseguire il test senza l’aggiunta di feedback che potrebbero alterare lo schema di movimento naturale.

Ordine di esecuzione: l’ordine consigliato per lo scrutinio (Fig.13) fa partire il cliente da in piedi e lo porta a terra, è un processo efficiente sia fisicamente che dal punto di vista temporale. L’ordine non deve per forza essere rispettato e questo non inciderà negativamente sui risultati del punteggio.

![Figure 13 – Ordine di esecuzione dei 7 test](image-url)

3.3.1.6 Risultati della valutazione

Chi ottiene un punteggio inadeguato, ovvero minore di 14, significa che adopera schemi di movimento scorretti durante le normali attività. I punteggi più alti rappresentano un
miglior movimento funzionale (Bond et al., 2017). Se i compensi continuano nel tempo, si rafforzano i modelli di movimento deficitari che portano a una scarsa biomeccanica e alla possibilità di lesioni micro o macro-traumatiche (Cook, 2010). È stato dimostrato che gli individui che eseguono movimenti con compensi o hanno dolore durante l'esecuzione dei compiti di FMS possano poi eseguire dei movimenti incorretti durante l'attività fisica o lo sport, predisponendoli quindi a lesioni (Cook, 2010).

3.3.1.7 Creazione degli esercizi correttivi

Affinché la creazione degli esercizi correttivi avvenga con successo, è presente un algoritmo, il quale permette la determinazione del ciclo di allenamento FMS.

Algoritmo per le strategie correttive

Un algoritmo definisce come svolgere un compito particolare e all'interno dell’FMS è presente per affrontare il punto debole trovato nel paziente (Fig.14). Con l’ausilio dell’algoritmo non si cerca di risolvere tutte le incompetenze, ma piuttosto si concentra su un problema specifico, che è necessario affrontare con priorità. Seguendo l’ordine dell’algoritmo si cercano i punteggi 1 o una asimmetria al fine di trovare “l’anello debole” nel “Raw Score”. A differenza dell’ordine dell’esecuzione dei test, che è basato su un progetto di scheda di valutazione creato per essere efficiente, l’ordine dell’algoritmo è diverso ed è basato sulle priorità per il processo di correzione.

![Figura 14 – Algoritmo del FMS](image)

Come vediamo dalla figura 15, le sequenze motorie di mobilità devono essere risolte come priorità perché la stabilità e il controllo motorio non possono essere presenti con una mobilità ridotta. Solo gli adeguati livelli di mobilità garantiscono una soddisfacente afferenza sensoriale utilizzata per sviluppare le strategie di stabilizzazione appropriate e i livelli appropriati del controllo motorio.
Ciclo di allenamento FMS

Stabilire le giuste progressioni per i programmi di allenamento e riabilitazione è molto importante. Purtroppo, a volte, vengono applicati esercizi correttivi senza regole stabilite o senza un controllo sistematico. Gli errori più comuni sono due: il primo è un approccio tipo protocollo, in cui l’esercizio fisico viene prescritto a una categoria generale di individui e non incorpora la valutazione individuale della disfunzione del movimento del singolo, o di competenza del movimento; il secondo, è un approccio cinesiologico di base, ovvero quando si valuta un gruppo muscolare “debole” e vengono prescritti esercizi di rinforzo mirati per il determinato gruppo sviluppando più forza nonostante solitamente il programma non incorpora il controllo motorio e la stabilità.

Contrariamente nell’ FMS gli esercizi correttivi oltre ad essere raggruppati a seconda della pertinenza che hanno riguardo i sette movimenti testati, seguono un percorso lineare che parte dalla mobilità di base e passa dalla stabilità fondamentale per arrivare al ripristino della sequenza motoria desiderata.

La progressione degli esercizi correttivi inizia quindi sempre con gli esercizi di mobilità incentrati sull’arco di movimento, sulla lunghezza dei tessuti molli e sulla flessibilità muscolare attraverso lo stretching o lavoro di mobilità articolare pertinente con la sequenza motoria da correggere. Questi esercizi vengono eseguiti bilateralmente se sono state rilevate limitazioni all’interno della sequenza motoria e si prefiggono come obiettivo primario. Se non avviene nessun cambiamento nella mobilità non si procede con il lavoro di stabilità, fino a quando non si noterà un cambiamento apprezzabile e misurabile. Non c’è bisogno che diventi completa o normale, ma un miglioramento deve essere prodotto, in modo che la persona possa assumere con successo la posizione appropriata. È consigliato tornare sempre agli esercizi di mobilità all’inizio di ogni sessione di allenamento prima di proseguire con gli esercizi di stabilità e controllo motorio perché assicura la presenza di un’adeguata lunghezza dei tessuti molli e l’allineamento strutturale necessario per gli esercizi di stabilizzazione. Gli esercizi di mobilità limitano la rigidità o ipertono muscolare che si sostituisce alla vera stabilità. Una volta ottenuta la mobilità ottimale si passa direttamente alla stabilità, ma periodicamente bisogna assicurarsi che la mobilità acquisita non sia andata persa. Gli esercizi correttivi di stabilità e controllo motorio che si focalizzano sulla sequenza di base del movimento sono
un’ampia categoria che comprende mobilità, allineamento, equilibrio e appropriati tempi di contrazione muscolare sub-massimale, rapidità ed efficace co-attivazione muscolare. L’assenza di un efficiente controllo motorio può apparire come debolezza, ma l’errore è cercare di aumentare la forza. In questi casi, invece, si lavora con degli esercizi di stabilità usando un carico leggero, una buona postura e movimenti ampi che raggiungono gli estremi dell’arco di movimento. La rapidità di attivazione e la sua possibilità di fare aggiustamenti dovuti ai cambiamenti di carico sono molto più importanti che la generazione di forza. La stabilità durante il movimento è importante, ma lo è di più quella ai limiti del movimento. Questa è la ragione principale del perché la mobilità sia importante, bisogna quindi testare il controllo motorio ai limiti del movimento. Per ultimo il ripristino delle sequenze di movimento, questi esercizi incorporano l’uso della mobilità fondamentale e della stabilità negli specifici schemi di movimento per rafforzare la coordinazione e la contrazione muscolare nel giusto istante. Questi esercizi rafforzano l’efficacia del movimento attraverso la ripetizione e la reattività e dovrebbero esplorare l’intero modello di movimento in modo che la mobilità e la stabilità possano interagire e diventare coordinate. La perfezione non è necessaria, ma non si ristabilirà la sequenza motoria senza la mobilità e stabilità necessarie per sostenere lo schema di movimento. Il sovraccarico con progressioni veloci con carico e intensità non è uno strumento correttivo efficace e solitamente causa un ritorno al modello di movimento limitato e disfunzionale.

3.3.1.8 Piramide della performance

L’obiettivo di un esercizio correttivo è risolvere o ridurre la disfunzione del movimento trovata grazie allo screening. A volte, però, ciò richiede una rottura della mobilità e stabilità di supporto e quindi la ricostruzione del modello stesso. Altre volte, la maggior parte della mobilità e della stabilità di sostegno necessarie sono effettivamente presenti ed è quindi possibile concentrarsi sull’esercizio correttivo per i modelli di movimento e il controllo motorio. Indipendentemente dalla natura specifica dei bisogni correttivi dell’individuo o del gruppo, tutti gli esercizi correttivi nel sistema di movimento funzionale seguono un percorso semplice ma molto specifico.

La piramide della performance (Fig.16) è un diagramma semplice costruito per dare un’immagine mentale, comprendere il movimento umano, gli schemi di movimento e può essere utile come guida per un programma di condizionamento fisico.
Secondo Gray Cook, per muoversi correttamente si necessita di un buon controllo dei pattern di movimento (Functional Movement) ovvero primo pilastro rettangolare che sta alla base. Il secondo pilastro riguarda le prestazioni o la performance, una volta stabilita la capacità di muoversi si deve guardare quant’è efficiente quel movimento. Questa efficienza può essere definita come potenza del movimento misurabile in generale (non potenza specifica), ad esempio il salto in verticale dimostra la capacità di produrre o generare potenza. I due primi pilastri rettangolari permettono di fare un paragone tra la capacità di eseguire dei movimenti funzionali e la capacità di esprimere potenza. L’ultimo pilastro è l’abilità sportiva, questo valuta la capacità dell’atleta nel fare una determinata attività o praticare uno sport specifico (si guardano i test specifici relativi a tale sport).

La piramide ottimale (Fig.16) rappresenta un tipo di atleta il cui schema di movimento dimostrato dall’FMS, l’efficienza del movimento dimostrato dai test di performance e l’abilità sportiva dimostrata con test specifici per lo sport e statistiche delle competizioni sono equilibrati e adeguati. Questo vuol dire che può essere ancora in grado di migliorare ma nessun miglioramento dovrebbe sconvolgere l’equilibrio della piramide. In particolare, la base allargata dimostra che la persona ha dei movimenti funzionali appropriati e ottimali possedendo la capacità di effettuare una gamma completa di movimenti e di controllare il proprio corpo con consapevolezza. Ad esempio, durante l’esecuzione di un salto in verticale, si nota se l’atleta carica il corpo in posizione rannicchiata, getta le braccia, poi stende leggermente il tronco e infine esplode con lo sforzo al momento giusto e ben coordinato in modo che nessun movimento sia sprecciato e la massima efficienza sia presente. Questa persona ha la potenzialità per migliorare e imparare con il tempo e la pratica di altri movimenti. Il terzo pilastro dimostra una quantità media o ottima di abilità specifiche nello sport o nella attività. L’ampia base della piramide crea un cuscinetto (Buffer Zone) molto importante, senza di esso non ci sarebbe un sistema di avvertimento e dimostra quindi che i movimenti funzionali dell’individuo sono più che sufficienti per gestire la quantità di energia che i movimenti stessi possono generare (la potenza generata può sostenere la capacità tecnica dell’atleta).

Oltre alla piramide ottimale sono presenti altre tre variazioni. La piramide sovra potenziale (Fig.17) rappresenta gli atleti che hanno una capacità di generare un’energia che supera la capacità di muoversi liberamente. Per rimediare, è quindi opportuno migliorare gli schemi di movimento pur mantenendo il livello attuale di potenza. Questo individuo avrà un punteggio basso sui test di mobilità e stabilità, ma la produzione di potenza è alta e avrà un punteggio medio nelle abilità specifiche. Molti atleti potrebbero non aver mai avuto un infortunio e/o sentirsi in ottima forma, ma decidono di allenarsi per migliorare, il punto di partenza sarebbero gli schemi di movimento funzionale per eliminare le limitazioni e per avere un pilastro più ampio e quindi creare un cuscinetto più grande (Buffer Zone).

La piramide sotto potenziale (Fig.18) rappresenta invece chi ha una libertà di movimento ma la cui efficienza è scarsa. Questo atleta dovrebbe trarre grandi vantaggi da un allenamento di forza, pliometrico e con i pesi per migliorare la propria condizione fisica. Allo stesso tempo, però, è importante che mantenga gli schemi di movimento funzionale mentre aumenta la forza, la resistenza e la velocità. Creando maggiore forza, potenza e resistenza del corpo si formerà una zona cuscinetto tra il secondo e il terzo pilastro della piramide (Buffer Zone), che permetterà di avere lo stesso livello di efficacia con un elevato livello di efficienza e un livello più basso di dispendio energetico. L’ultima piramide (Fig.19), ovvero “Under Skilled”, rappresenta l’atleta che è tecnicamente scarso. In questa situazione gli schemi di movimento, l’efficienza e la generazione di potenza sono
adeguati, mentre le capacità tecniche specifiche per il suo sport sono l’anello debole, quindi è allenato ma non è adeguatamente abile. Un programma d’allenamento specificamente progettato intorno ai fondamenti delle abilità sportive e tecniche sarebbe perfetto per trarre dei miglioramenti.

Figura 17 - Piramide sovra potenziale

Figura 18 - Piramide sotto potenziale

Figura 19 - Piramide dell’atleta scarso
3.3.1.9 Apprendimento motorio

Per concludere questo capitolo, riporto quanto affermato da Gray Cook e quanto imparato nelle lezioni del professore Cesana e professoressa Bassani. La teoria spiega che quando impariamo un movimento, ovvero all’acquisizione di una abilità motoria si attraversano due fasi (Fig.20): una prima fase di apprendimento rapido in cui i miglioramenti sono considerevoli e una seconda fase in cui ulteriori miglioramenti avvengono in modo più lento attraverso diverse pratiche. Nella prima fase (fasi di apprendimento veloce), il movimento è controllato e volontario, il quale richiede un grande ingaggio attentivo e una maggiore attivazione delle aree cerebrali frontali e del cervelletto. Nella seconda fase (fasi di apprendimento lento), il movimento diventa automatico, l’azione viene compiuta senza molto ingaggio attentivo e con meno comandi cognitivi. Attraverso la ripetizione viene memorizzato centralmente e infine reso un programma motorio declinato alle aree posteriori come i gangli della base.

L’abilità motoria è completamente appresa se vengono raggiunti gli obiettivi, ovvero: se viene svolta in modo automatico (senza sforzo eccessivo e grande ingaggio attenzione), se è trasferibile in altri contesti e quando è stabile e senza errori. Essa deve quindi essere efficace (raggiungere lo scopo) ed efficiente (raggiungere la qualità: gesto fluido, coordinato, corretta ampiezza del movimento, la giusta forza, il movimento giusto al momento giusto).

Se i movimenti che impariamo sono eseguiti in modo errato, inefficace o asimmetrico si possono verificare dei problemi. Un esempio può essere dato da un soggetto che cambia sport o che inizia una nuova attività fisica in assenza di uno screening iniziale. Tale soggetto potrebbe non avere l’equilibrio giusto tra la mobilità e la stabilità, di conseguenza eseguirà le diverse abilità richieste utilizzando schemi di movimento non idonei per superare le difficoltà. Il modello di movimento compensatorio sarà quindi rafforzato durante tutto il processo di allenamento. L’individuo creerà un modello di movimento povero che verrà subconsciamente utilizzato ogni volta che viene eseguita l’azione (Cook et al., 2006a). È quindi molto importante definire gli schemi di movimento inefficaci che hanno il potenziale per portare a ulteriori squilibri di mobilità e di stabilità, precedentemente identificati come fattori di rischio di infortuni.

![Figura 20- Fasi dell’apprendimento motorio](image-url)
4. Analisi dati

4.1 Analisi dei questionari e infortuni

Per l’elaborazione di questo progetto è stato importante definire il significato di “infortunio” al fine di non registrare ogni tipo di “lesione”, le quali non sempre erano significative. Gli infortuni, infatti, venivano considerati tali se portavano il giocatore a intraprendere un percorso riabilitativo e se il periodo di stop dall’attività sportiva era maggiore di 3 settimane.

Grazie al questionario, strutturato in tre parti, consegnato a inizio stagione 2016/2017 (periodo da giugno a luglio) ho raccolto tutte le informazioni necessarie per conoscere al meglio ogni membro del team. Il focus principale del questionario, oltre a quello di conoscere i giocatori (nella prima parte), avere un’idea degli infortuni precedenti (l’anamnesi remota, seconda parte), era avere una descrizione degli infortuni accaduti nella stagione 2016/2017 ovvero quella antecedente (terza parte).

Nella seconda parte, ovvero dell’anamnesi remota, era richiesto di segnalare ogni tipo di infortunio accaduto in passato in modo da poter attingere alle informazioni per accertare un eventuale infortunio potesse derivare da una recidiva o semplicemente da una riabilitazione portata a termine scorrettamente. Tutte queste informazioni si trovano sul formulario in allegato (Allegato 6).

Per la terza parte del questionario ho deciso di riassumere i questionari in forma di tabella riportando quello che era necessario per l’analisi, ovvero: il nome del giocatore (sigla per mantenere l’anonimato e rispettare il segreto professionale), una breve descrizione dell’infortunio (quando e diagnosi), la dinamica e il fattore di rischio (intrapersonale o extrapersonale); la riabilitazione e il tempo di stop dall’attività sportiva e le informazioni riguardanti l’impatto del fisioterapista, degli allenatori e/o di altre figure implicate nel trattamento dell’infortunio (Tab.2).

I giocatori che compongono la squadra di Basket SAM sono in totale 15. Per l’analisi dei questionari ho tenuto in considerazione solamente 10 giocatori per il semplice motivo che alcuni sono entrati a far parte della squadra tardiamente e un altro giocatore, invece, è stato operato al naso durante la preparazione atletica estiva e non ha aderito al progetto.

Tabella 2 – Riassunto questionario stagione 2016/2017

<table>
<thead>
<tr>
<th>Giocatore</th>
<th>Infortunio</th>
<th>Dinamica</th>
<th>Riabilitazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>Ottobre 2016</td>
<td>Fattore extrapersonale</td>
<td>Stop: > 1 mese</td>
</tr>
<tr>
<td></td>
<td>Distorsione della caviglia destra con conseguente stiramento dei legamenti di II° grado</td>
<td>Trauma da contrasto durante l’allenamento mentre atterrava sul piede di un compagno da un salto</td>
<td>Uso delle stampelle per una settimana ed esecuzione di un ciclo di fisioterapia</td>
</tr>
</tbody>
</table>

Commento personale sulla presa a carico
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Novembre 2016</td>
<td>Lesione parziale fascia plantare piede destro (primo infortunio della sua carriera sportiva)</td>
<td>Fattore intrapersonale
Comparsa del dolore qualche settimana prima e peggioramento durante una partita</td>
<td>Stop: 3,5 mesi
Uso di un tutore e delle stampelle. In seguito, fastidi e problemi legati alla formazione del tessuto cicatriziale (trattamento con onde d’urto e con elettrolisi percutanea)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>Ottobre 2016</td>
<td>Lesione della cuffia dei rotatori spalla sinistra</td>
<td>Fattore extrapersonale
Trauma da contrasto con un compagno durante un allenamento</td>
<td>Stop: > 5 mesi
Uso del tutore per un mese e ricostruzione della cuffia in artroscopia (intervento)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Settembre 2016</td>
<td>Lesione muscolare inguine destro con stiramento di II° grado</td>
<td>Fattore intrapersonale
Fastidio iniziato durante un allenamento (con il movimento di scivolata) e peggioramento in partita</td>
<td>Stop: 1 mese
Esecuzione di un ciclo di fisioterapia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS</td>
<td>Ottobre 2016</td>
<td>Fattore extrapersonale</td>
<td></td>
<td>Stop: > 3 mesi</td>
</tr>
</tbody>
</table>

Commento personale sulla presa a carico

Si è sentito preso a carico nel modo adeguato dal fisioterapista, ma il piano di allenamenti di preparazione prima del suo rientro in campo secondo lui non è stato ben organizzato.

Si è sentito preso a carico, afferma che è stata ben organizzata la riabilitazione e il suo rientro in campo, ma la comunicazione tra essi non tanto.

Secondo lui la riabilitazione non è stata molto coincisa, non sono stati forniti esercizi precisi da svolgere negli allenamenti se non quelli di stretching. Riferisce che il resto dello staff (allenatore, preparatore atletico) ha lavorato insieme per permettere un rientro ottimale e progressivo.
ANALISI DATI

Come riportato nella tabella sovrastante, il totale di atleti infortunati nella stagione 2016/2017 è di sei atleti, ovvero OH, PI, DA, MM, YS, AM. I tre giocatori AB, TS e FV non hanno avuto infortuni, mentre FA ha avuto uno stop di sole due settimane con una guarigione spontanea.

Dai dati statistici forniti dalla SUVA, capitolo 3.2, si segnalava che la maggior parte degli infortuni, il 46%, era causato da fattori interni, all'interno della squadra ci sono stati in totale 3 infortuni provocati da fattori intrapersonali (interni), ovvero legati all'atleta. Gli altri infortuni, invece, sono stati scatenati da fattori extrapersonali agendo dunque sull'atleta dall'esterno e in particolar modo 3 da contrasto e 1 da un atterraggio su un compagno. Le zone colpite nei giocatori della SAM sono state in primo luogo piede e gamba, come già la SUVA rappresentava nelle sue statistiche sugli infortuni nel basket figurando al

<table>
<thead>
<tr>
<th>Giocatore</th>
<th>Data</th>
<th>Tipo di Infortunio</th>
<th>Causa Infortunio</th>
<th>Durata Stop</th>
<th>Trattamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Giugno 2016</td>
<td>Distorsione in inversione della caviglia destra</td>
<td>Fattore extrapersonale</td>
<td>Stop: 1 mese</td>
<td>Esecuzione di un ciclo di fisioterapia. È stato trattata la caviglia con onde d’urto e game ready</td>
</tr>
</tbody>
</table>

Commento personale sulla presa a carico

Si è sentito ben preso a carico. Sono stati dati consigli ed esercizi da eseguire durante gli allenamenti e prima delle partite. Prima del suo rientro in campo ci sono stati degli allenamenti specifici. Purtroppo, dopo meno di un anno, il dolore è tornato. È stato fissato un appuntamento con il medico per valutare un futuro intervento.

Il recupero è stato graduale e non d’urgenza visto la fine della stagione.
primo posto queste aree con il 38,7% sul totale degli infortuni. In aggiunta, per il giocatore YS* è in atto la pianificazione di un intervento per l’anca sinistra e sarà eseguita una ricostruzione dell’acetabolo in arthroscopia. Questo impedirà a YS di giocare almeno per metà della stagione con la squadra in serie A.

Successivamente, grazie alla collaborazione con il preparatore atletico Antonello, ho potuto registrare in tempo reale la tipologia di infortuni dei giocatori per la stagione 2017/2018 (Tab.3).

Tabella 3 – Riassunto infortuni stagione 2017/2018

<table>
<thead>
<tr>
<th>Giocatore</th>
<th>Infortunio</th>
<th>Dinamica</th>
<th>Riabilitazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>Ottobre 2017 Sublussazione della rotula a inizio stagione, lesione del legamento rotuleo e della cartilagine della rotula</td>
<td>Fattore intrapersonale Durante un cambio direzione in allenamento</td>
<td>Stop: 1 mese Esecuzione di un percorso riabilitativo e ripresa a giocare</td>
</tr>
<tr>
<td></td>
<td>Gennaio 2018 Lussazione totale della rotula e rottura del tendine rotuleo con ulteriore danneggiamento della cartilagine</td>
<td>Fattore extrapersonale Contrasto con un compagno durante l’allenamento</td>
<td>Stop: fino a fine stagione Uso delle stampelle 6 settimane e riabilitazione di 8-10 mesi con impossibilità di allenamento</td>
</tr>
</tbody>
</table>

Commenti e osservazioni

Anno 2013: già nota la fuoriuscita della rotula del ginocchio destro con relativa riabilitazione portata a termine

Aprile 2018: (dopo il secondo infortunio a gennaio) operazione in arthroscopia con prelevamento di un campione di cartilagine e relativa coltivazione di cellule. Successivamente seconda operazione con posizionamento di nuova cartilagine sotto la rotula e taglio del tendine rotuleo con rispettiva ricostruzione e con attacco posteriormente al ginocchio per migliorare la stabilità.

| MM | Gennaio 2018 Distorsione caviglia sinistra di II° grado | Fattore intrapersonale Appoggio della caviglia sinistra in supinazione durante caduta in allenamento | Stop: N.D. Presa a carico in febbraio 2018 con fisioterapia mirata al recupero del ROM e potenziamento dei muscoli tibiali e peronei attraverso |
esercizi specifici, il nuoto e la cyclette con una cavigliera elastica di stabilizzazione. Dopo MRI esercizi di propriocezione e rinforzo senza limiti specifici aumentando la mobilità progressivamente. Dopo l’infiltrazione aumento di intensità degli esercizi con salti, cambi di direzione, tiri e corsa

Commenti e osservazioni

Recidive passate di traumi distorsivi bilaterali alle caviglie (sx > dx)
Marzo 2018: Risonanza (MRI) con esiti di:
- Lesione completa del legamento talo-fibulare anteriore con edema osseo dell’astragalo in corrispondenza dell’entesi legamentosa.
- Lesione parziale grado II del legamento talo-tibiale anteriore con edemi ossei del malleolo mediale e dell’astragalo in corrispondenza dell’entesi legamentosa
- Tenosivite del tibiale posteriore, del flessore lungo dell’alluce e dei peronei

MM era limitato nella corsa con dolori anteriore e anteromediali. La flessione dorsale e plantare era di 0-0-25 rispetto al destro 10-0-30.
Aprile 2018: Infiltrazione senza grandi cambiamenti, se non qualche facilità nello svolgere delle attività (disturbi occasionali a livello mediale), nessun cedimento né instabilità. La caviglia era ancora un po’ edematosa e questo gli impediva di svolgere normalmente le sue attività.

<table>
<thead>
<tr>
<th>IP</th>
<th>Ottobre 2018</th>
<th>Fattore intrapersonale</th>
<th>Stop: 4 mesi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Problematica a livello cartilagineo della rotula del ginocchio destro</td>
<td>Insorgenza spontanea</td>
<td>Ha eseguito fisioterapia per 5 mesi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP</th>
<th>Febbraio 2018</th>
<th>Fattore extrapersonale</th>
<th>Stop: fino a fine stagione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lesione del corno posteriore del menisco mediale del ginocchio destro</td>
<td>Caduta, atterrando al suolo dopo un balzo</td>
<td>Ha eseguito fisioterapia per 2 mesi</td>
</tr>
</tbody>
</table>

È importante evidenziare il fatto che DA e MM si sono infortunati nello stesso periodo di gennaio 2018, il quale è abbastanza impegnativo dal momento in cui si richiede una preparazione importante prima di iniziare il campionato. La concentrazione solitamente è molto alta e si richiede molto dai giocatori.

Come possiamo rilevare da quanto scritto, DA ha lussato totalmente la rotula lesionando ulteriormente la cartilagine. Egli aveva già subito una sublussazione in passato: la prima nel 2013 e la seconda a ottobre 2017. È noto che l’allineamento della gamba è scorretto, i condili non hanno la forma adatta per accogliere la rotula e questo facilita la fuoriuscita. Tutto questo mi porta a pensare che l’atleta non è stato ben seguito durante il percorso riabilitativo. Lui stesso ha ammesso di non essersi mai sentito sicuro di quel ginocchio. Il medico sportivo alla fine, dopo diversi esami, ha deciso di operare il giocatore per poter permettergli di tornare in campo. L’infortunio è durato fino a maggio (quando è finita la stagione). DA sta continuando con la riabilitazione e ha tolto da poco le stampelle.

Per quanto riguarda MM ipotizzo che la sua lesione possa essere dovuta a una recidiva, in cui possono esserci stati diversi fattori concomitanti a scatenarla come la diminuzione del ROM, propriocezione, forza, flessibilità. Il suo trascorso ci indica che la persona è soggetta a distorsioni di caviglia. Egli ha intrapreso un lungo percorso riabilitativo, in cui è riuscito ad allenarsi ogni tanto, ma non è più entrato a giocare le partite. Il 6 giugno ha ripreso ad allenarsi con il preparatore atletico Antonello. Attualmente riferisce di sentirsi finalmente bene fisicamente.

Il giocatore IP è noto per problemi di cartilagine, ed è un atleta politraumatizzato. È molto probabile che le lesioni della cartilagine derivino da infortuni e operazioni passate, per le quali non ho indagato. La stagione scorsa 2016/2017 (Tab.2) egli ha raccontato di aver avuto una fascite plantare al piede destro e questo sicuramente influenza sul corretto allineamento e biomeccanica dell’arto. Dopo il secondo infortunio ha dovuto concludere la stagione e attualmente si aspetta l’operazione prima del suo rientro agli allenamenti.

Possiamo notare che le zone più colpite rimangono le stesse: piede, gamba, caviglia. Al contrario, i fattori di rischio per IP e DA sono sia intrapersonali che extrapersonali, mentre per MM solo intrapersonali.

Segnalo che YS è stato operato il 20.10.2017 e ha successivamente ripreso a giocare a fine campionato, ma nella squadra giovanile senza avere nuovi infortuni e non più in serie A.
4.2 Risultati dopo i primi screening FMS

In questo capitolo descriverò i punteggi ottenuti nel primo test effettuato ai giocatori avvenuto durante la preparazione fisica (PPE). In questa parte ho integrato anche i 4 giocatori stranieri che si sono aggiunti dopo l’inizio stagione (settembre-ottobre) in modo da poter analizzare anche i loro dati, poiché ritengo si possa giungere a conclusioni interessanti. Esaminerò i giocatori nei due gruppi distinti: giocatori nazionali e giocatori stranieri.

Figura 21 – Primo screening FMS

Osservando il grafico e considerando solo i 10 giocatori di nazionalità svizzera, ovvero i principali attori della mia ricerca, si può notare che la tendenza dei dati è inferiore a 14, ovvero il numero soglia correlato al rischio infortunio. Secondo questo grafico e secondo il pensiero dell’FMS, solo 3 giocatori su 10 sarebbero fuori dal rischio di infortuni: AM, IP, HO. Gli altri 7 giocatori sono tutti sotto la soglia. Il giocatore con il punteggio più basso è AD con 11 seguito da BA, MM, YS, ST, VF con un punteggio di 13, mentre IP raggiunge precisamente il numero 14.

Valutando i 4 giocatori stranieri, solo RJ si trova sopra la soglia, mentre gli altri 3 sono leggermente sotto con i rispettivi punteggi di 12 per JM, 13 per MK e OT. Nonostante ciò, si è infortunato solo un giocatore durante la stagione, ovvero JM, colui che ha ottenuto il punteggio più basso. Non potendo fare un confronto tra stagione scorsa e presente, non ho tenuto in considerazione il tipo di infortunio. Inoltre, il loro programma di allenamento è stato molto diverso da quello dei principali giocatori, poiché avendo più tempo libero potevano allenarsi due volte al giorno e concentrarsi sui punti deboli.

4.3 Stagione “2016/2017” e “2017/2018” a confronto dopo l’introduzione dell’FMS

In questo capitolo esporrò i cambiamenti avvenuti tra le due stagioni dopo l’introduzione del programma FMS.

Innanzitutto, giunti quasi al termine del lavoro, dopo aver presentato tutti gli infortuni avvenuti, è chiaro che in questa stagione il tasso d’infortunio è diminuito. Le figure 19 e 20 riassumono i dati.
Nella figura 22, salta subito all’occhio come il numero di giocatori non infortunati per i giocatori principali sia aumentato da 4 a 7, mentre gli atleti infortunati sono diminuiti da 6 a 3. Questo può essere interpretato come un risultato positivo acquisito grazie anche all’introduzione di un nuovo sistema che ha lo scopo di prevenire e predire gli infortuni.

Da un’altra prospettiva, osservando la figura 23, la quale rappresenta un grafico a torta, vediamo come le percentuali siano notevolmente aumentate per gli atleti non infortunati: dal 40% c’è stato un aumento al 67%, mentre i giocatori infortunati sono diminuiti dal 60% al 33%.
Nell’istogramma (Fig.24) viene rappresentata l’evoluzione dei punteggi ottenuti a inizio stagione con quelli a fine stagione. Come si può osservare i dati tendono ad aumentare, dimostrando come l’esecuzione del programma FMS e degli esercizi correttivi potrebbero aiutare a migliorare le proprie carenze. Più dettagliatamente, 10 giocatori su 14 sono migliorati, mentre 3 giocatori sono rimasti con un punteggio invariato. HO è stato assente per un periodo a causa del militare, periodo in cui non si è potuto allenare. VF e JM sono due atleti a cui non è mai interessato lavorare sugli esercizi correttivi che venivano proposti e quindi sono sempre rimasti focalizzati più sul volere aumentare la forza e migliorare le proprie abilità nel basket. Un caso particolare è quello di AP, il quale è peggiorato arrivando ad ottenere il punteggio da 17 a 15. La spiegazione che mi sono data, poiché è un atleta che si era impegnato, è che possa essere stato il fatto che la persona che ha sottoposto il test a inizio stagione Emanuele era diverso da quello che lo ha eseguito alla fine (Antonello). Solo in questo caso c’è stato un cambio di esaminatore.
5. Discussione

Durante tutto il lavoro di tesi ho analizzato e cercato di capire se questo strumento FMS, che valuta i modelli di movimento fondamentali e funzionali e individua i soggetti che hanno maggior probabilità di subire un infortunio atletico, possa essere effettivamente adoperato nel campo riabilitativo in modo valido. Affine di raggiungere questo obiettivo mi sono aiutata in un primo momento mediante l’utilizzo di un questionario, il quale mi ha permesso di venire a conoscenza della storia clinica dei vari giocatori, e in seguito, con la teoria e con l’analisi dei risultati ottenuti con l’applicazione del test FMS da parte del mio allenatore. Inoltre, durante l’intera stagione 2017/2018 anche con l’ausilio del registro infortuni in tempo reale della squadra SAM. Oltre a ciò la comunicazione con fisioterapisti e diversi allenatori è stata di grande importanza.

5.1 Applicazione del test FMS

Affinché un qualsiasi test sia utilizzabile deve essere affidabile, capace, valido, sensibile e specifico (Beardsley & Contreras, 2014).

5.1.1 Affidabilità

L’affidabilità descrive se un test può essere ripetuto dalla stessa persona in un momento leggermente diverso (intrarater) o da persone diverse allo stesso tempo (interrater) producendo il medesimo risultato. Gli autori Brown, Teyhen e Shultz dimostrano che lo strumento può essere migliorato con la formazione del somministratore. In questi 3 studi i valutatori con vari livelli di esperienza sono stati esaminati in modo diverso dimostrando che la scala fornisce misure abbastanza stabili se usata in più occasioni dallo stesso valutatore o da valutatori diversi. Durante la mia esperienza, però, ho avuto modo di osservare all’opera due esaminatori e ho riscontrato qualche piccola differenza nella valutazione dei giocatori di basket. A questo proposito, per quanto riguarda il mio progetto, ho voluto quindi considerare solo le valutazioni effettuate da Antonello affinché i risultati potessero essere più corretti. Al contrario per il giocatore AP, il quale probabilmente è stato sovra stimato inizialmente (vedi Fig. 21), ho preferito tenere in considerazione entrambe le valutazioni.

5.1.2 Capacità

Con il termine capacità, invece, si intende il principio fondamentale del test FMS, ovvero quello di mettere in evidenza i modelli di movimento inappropriati. Durante la creazione del test di screening, affinché i risultati venissero interpretati correttamente, è stato stabilito un punteggio soglia (inglese cut off) di 14, il quale delimitasse la probabilità di infortunio nei soggetti sottoposti e che è stato confermato attraverso numerosi studi nel corso degli anni (Cook; Kiesel et al., 2007; Brown, 2011; Teyhen et al., 2012; Krumrei et al., 2014; Cuchna, Hoch, & Hoch, 2016). Secondo Beardsley, il test può distinguere quali individui hanno un rischio maggiore di lesione rispetto a chi ha un rischio minore, ma è anche importante notare che potrebbe non essere in grado di indentificare le persone che hanno precedentemente sofferto una significativa lesione traumatica, come per esempio è stato riscontrato che il test non differenzia gli individui con o senza precedente ricostruzione del legamento crociato anteriore (Beardsley & Contreras, 2014). Sempre per quanto concerne il punteggio soglia, Krumrei e i suoi colleghi suggeriscono che in futuro il punteggio venga cambiato. O'Connor e il suo team ritengono che il valore di 14 non sia stabile dal momento in cui hanno osservato che può variare a dipendenza della
popolazione sottoposta (Krumrei, Flanagan, Bruner, & Durall, 2014; O’Connor et al., 2011). Secondo i risultati da me osservati, la maggior parte dei giocatori (10 su 14) ha ottenuto un punteggio pari o inferiore a 14 e a fine stagione, tra i giocatori nazionali che ho analizzato e che erano a rischio infortunio, ho potuto riportare che in realtà solo 3 su 7 si sono infortunati. I giocatori stranieri, invece, nonostante fossero 3 su 4 a rischio, solo 1 si è effettivamente lesionato. Dal mio punto di vista, dunque, sarei concorde ad una revisione del punteggio soglia proponendo un abbassamento a 13, poiché nel mio caso i giocatori infortunati avevano un risultato pari o inferiore a quest'ultimo. Nonostante abbia riscontrato che il punteggio definito a inizio stagione non sia stato così preindicativo, questo mi ha permesso di poter in qualche modo identificare e prestare più attenzione alle persone con rischio maggiore (vedi Fig.21).

5.1.3 La validità e la correlazione con sensibilità e specificità

Se un test misura effettivamente ciò che si intende misurare è descritto dalla validità, che nel caso dell’FMS sarebbe la capacità di misurare la prevalenza di modelli disfunzionali potenzialmente dannosi. La definizione chiara dell’oggetto di misurazione è: “determinare se l’atleta ha i movimenti essenziali necessari per partecipare ad una attività sportiva con un ridotto rischio di lesioni” (Beardsley & Contreras, 2014). Tuttavia, per far sì che il test sia valido i criteri di sensibilità e specificità devono essere rispettati.

Per sensibilità si intende la percentuale di soggetti che hanno effettivamente le condizioni target, ovvero che fornisce correttamente risultati di test positivi indicando che il test non rischia di perdere persone che sono effettivamente a rischio di lesioni.

La specificità, invece, si riferisce alla percentuale di soggetti che non hanno realmente le condizioni target e quindi che danno correttamente risultati negativi definendosi anche test di veri negativi. Questi, quindi, evitano di dare un falso positivo, cioè soggetti falsamente informati di essere maggiormente a rischio di infortunio.

Secondo l’articolo di Roald Bahr sono necessari almeno tre passaggi per riuscire a confermare la validità di un test di questo tipo, ovvero dimostrare: (1) una forte relazione negli studi prospettici tra il punteggio del test di screening e un rischio di lesione; (2) adeguate proprietà del test utilizzando appropriati strumenti statistici; (3) un programma d’ intervento destinato agli atleti soggetti ad infortunio a confronto con lo stesso programma dato a tutti gli atleti (Roald Bahr, 2016). Fino ad ora, secondo Roald Bahr, non esiste nessun studio che soddisfi questi tre criteri e per sviluppare una buona prevenzione mirata è necessario conoscere o comprendere i fattori di rischio e i principali meccanismi di lesione come spiegato nel capitolo 3.1.1. (R. Bahr & Holme, 2003).

Durante questi mesi, mi sono accorta che uno strumento diagnostico progettato per identificare una disfunzione muscolo-scheletrica del paziente è ben diverso dal riuscire a fare una previsione di un infortunio con uno screening. Infatti, durante la valutazione del paziente attraverso il ragionamento clinico viene eseguito l’esame soggettivo e oggettivo. L’esame oggettivo solitamente è composto da test, misurazioni e di conseguenza il risultato del test è solitamente dicotomico (positivo/negativo). Da qui si crea un’ipotesi e si fissano degli obiettivi con i propri provvedimenti e indicatori di efficacia. Al contrario, per riuscire a individuare una persona a rischio d’infortuni sono necessari diversi test a variabile continua come ad esempio valutare la resilienza al contraccolpo eccentrico e il controllo del ginocchio. Per rendere quindi il test utile nella pratica clinica, la variabile continua dovrebbe essere trasformata in un risultato dicotomico, ovvero confermare o no se l’atleta è a rischio. In ambito fisioterapico, una volta individuato il problema principale,
l’obiettivo è quello di iniziare il trattamento il prima possibile e lo stesso vale nella prevenzione degli infortuni, il quale mira a intervenire tempestivamente per minimizzare i fattori di rischio prima che accada l’infortunio. Alcuni dei fattori di rischio modificabili possono essere misurati attraverso il test per poi essere successivamente migliorati da un programma di allenamento specifico. Nonostante ciò, anche i fattori non modificabili possono essere utili e si può cercare di sfruttarli, come ad esempio se si è a conoscenza di una storia di infortuni precedenti, si possono cercare delle misure di intervento per quei determinati sottogruppi ritenuti a rischio maggiore. Durante la parte pratica del mio lavoro, essere stata a conoscenza della storia antecedente di infortuni dei giocatori mi ha permesso di avere in chiaro le tipologie di lesioni che avevano avuto e a tener presente i fattori di rischio non modificabili. Da qui ho potuto ragionare e osservare la loro prestazione durante i movimenti funzionali che proponeva il test. Notare espressioni di difficoltà, di dolore, vedere compensi o schemi completamente errati sono stati spunti per poter ragionare successivamente.

Stando a quanto affermato dall’autore Bahr, ovvero che finora non c’è stato alcun test che soddisfi i criteri prima citati, la validità riscontrata da Frost et al. è scarsa poiché egli osserva che se gli esercizi dei test vengono eseguiti diversamente mostrano caratteristiche diverse, come ad esempio se viene richiesto di esercitarsi con più velocità o con un carico maggiore (Frost et al., 2015). Ciò suggerisce, inoltre, che è probabile che vi sia una discrepanza tra i modelli di movimento del test FMS quando vengono eseguiti di fronte a un valutatore e durante il movimento sportivo. Quindi, il modello di movimento visualizzato negli atleti durante i test FMS potrebbe differire da quelli visualizzati durante il movimento sportivo a velocità specifiche dello sport (Frost et al., 2015; Beardsley & Contreras, 2014). Detto ciò, nonostante il test non sia la fonte più precisa per individuare i soggetti a rischio di lesioni, per me rimane uno strumento che ti permette di porre attenzione a determinati movimenti che sono contenuti nei movimenti sportivi. Di conseguenza, userei questo strumento non per fare diagnosi, bensì per mettere i campanellini su eventuali movimenti che potrebbero essere migliorati. Inoltre, sempre Frost e il suo team hanno riscontrato che la conoscenza dei criteri di test FMS erano in grado di influenzare in modo significativo l’esito del test (Frost et al., 2015) e dunque è importante non informare gli atleti su quanto verrà valutato. Autori come Brown e Krumrei segnalano che questo strumento predittivo è maggiormente efficace nell’individuazione di lesioni alle estremità inferiori rispetto a quelle superiori, come anche potrebbe essere diverso a dipendenza della tipologia di sport in cui si applica (Brown, 2011; Krumrei et al., 2014). Nell’analisi da me eseguita, le tipologie di lesione avvenute nei giocatori durante la stagione 2017/2018 hanno coinvolto caviglie e ginocchia. Nonostante questa congruenza, però, credo che il test di screening sia bilanciato in maniera corretta per localizzare eventuali asimmetrie e/o carenze anche negli arti superiori. Attraverso i movimenti funzionali di valutazione, infatti, veniva implicata l’integrazione di ambedue le tipologie di arti e dunque anche una distinzione tra sport diversi è forse poco probabile dal mio punto di vista. I creatori del test affermano che i movimenti FMS legano tutti gli sport insieme perché sono fondamentali e rappresentativi del movimento umano (Beardsley & Contreras, 2014).

5.2 L’FMS nella programmazione degli esercizi correttivi

La capacità del test FMS di analizzare i movimenti fondamentali negli atleti può fornire indicazioni per un programma su cui lavorare durante l’intera stagione, poiché individua la disfunzione del movimento.
Il test FMS, esaminando qualitativamente i movimenti fondamentali, può essere definito come la capacità di produrre e mantenere un equilibrio stabile tra mobilità e stabilità lungo la catena cinetica (Sprague, Mokha, & Gatens, 2014). Dal momento in cui il movimento funzionale è di elevata importanza per le prestazioni e le abilità legate allo sport che comprendono l’interazione tra forza muscolare, stabilità, flessibilità e controllo motorio, la disfunzione nei modelli è stata collegata a un aumentato di rischio di lesioni atletiche e alla compromissione delle prestazioni atletiche (Sprague et al., 2014). Tradizionalmente, l’allenamento e la preparazione fisica durante la stagione sono enfatizzati a promuovere prestazioni ottimali, aspetti come: la capacità aerobica, forza, potenza, agilità e resistenza sono inclusi nei programmi dati dai preparatori atletici, ma esperti come Sprague et al. consigliano di non tralasciare la qualità del movimento dimostrando che il concetto del tipico programma di allenamento non è sufficiente per garantire una salute ottimale e prestazioni migliori negli atleti. Infatti, lo scopo degli esercizi correttivi dati dal programma FMS è quello di risolvere i modelli di movimento disfunzionali che sono stati misurati. È stato dimostrato che esercizi mirati a risolvere problemi specifici migliorano la qualità del movimento e riducono il rischio di lesioni nella popolazione atletica, mentre l’allenamento di forza tradizionale durante una stagione migliora solo la prestazione (Sprague et al., 2014). Possiamo quindi dire che il contributo allo sviluppo di modelli di movimento con programmi di esercizio specifici in base alle limitazioni di movimento sono più efficaci di programmi di esercizi generali di forza. In termini di medicina preventiva secondo Dinc et al., i singoli programmi di allenamento basati sui punteggi FMS sono stati ritenuti vantaggiosi in termini di riduzione del numero di lesioni e riduzione della gravità delle lesioni (Dinc et al., 2017). Inoltre, è importante notare che secondo il ricercatore Beardsley non sono stati ancora condotti studi che abbiano verificato se il miglioramento di un punteggio FMS sia solo attraverso gli specifici esercizi correttivi e funzionali o anche grazie agli esercizi tradizionali di resistenza, di forza o specifici per un determinato sport (Beardsley & Contreras, 2014).

Per quanto concerne la mia esperienza personale, grazie alla valutazione dei 7 item, si sono rilevati i punti deboli dei singoli giocatori e in base a ciò sono stati creati i programmi personalizzati che venivano forniti dal sistema FMS ogni mese. Una volta ottenuti tutti i punteggi, in generale gli atleti sono risultati carenti soprattutto nella mobilità e nel controllo del movimento (stabilità). Ho preso la decisione di non riportare nel capitolo “Analisi dei dati” ogni singolo punteggio dei movimenti ottenuto, poiché era un compito affidato al sistema e quello che ho deciso di fare è stato invece osservare e riflettere su quanto visto dagli esercizi forniti e confrontarlo con le nozioni apprese durante questi anni di studio. A parere mio gli esercizi erano ben coincisi a soddisfare i criteri richiesti per poter migliorare il movimento. Seguendo l’algoritmo dato dall’FMS (Fig. 14) i primi esercizi conseguiti erano volti a recuperare le sequenze motorie di mobilità poiché devono essere risolte come priorità dato che la stabilità e il controllo motorio non possono essere presenti con una mobilità ridotta. Prestabilito che la mobilità era un punto debole comune alla maggior parte dei giocatori si è intrapreso nel programma gli stessi esercizi. Nel corso della stagione, affiancato al programma di esercizi correttivi dell’FMS individualizzati c’era la preparazione fisica pianificata da Antonello, la preparazione in campo con le specifiche capacità del basket e la teoria da applicare nel gioco di squadra e nei diversi ruoli. In palestra dopo il riscaldamento e a fine allenamento tutti i giocatori presenti avevano il compito di svolgere i propri esercizi singolarmente. Si era inoltre deciso in comune accordo con Antonello, vista la diminuzione di mobilità riscontrata in tutti i giocatori a livello dell’articolazione tibiotarsica e degli ischio crurali, di lavorare in comune durante il riscaldamento con degli esercizi mirati da me proposti. Sostanzialmente gli esercizi correttivi dovevano essere praticati anche dopo gli allenamenti per il basket e prima o
dopo una partita. In aggiunta, ho osservato che i programmi potevano assomigliarsi come anche essere completamente diversi. Questo dipendeva dalle caratteristiche dei singoli giocatori, ma è stato molto interessante vedere chi aveva gli stessi punti deboli e di conseguenza seguire un percorso di esercizi molto simile. Oltre alla limitata mobilità anche la stabilità del core era carente. Infatti molti degli esercizi con il passare dei mesi si sono concentrati sul rinforzo degli stabilizzatori della colonna vertebrale.

Grazie ai dati analizzati si dimostra che i giocatori di basket sono più soggetti a lesioni agli arti inferiori, ma questo è un motivo in più per lavorare sui fattori di rischio che possono compromettere la loro salute. A questo proposito riporto l’autore Dinc, il quale attesta una relazione statisticamente significativa tra le lesioni dell’arto inferiore dovute a una mancata stabilità del tronco (Dinc et al., 2017). I giocatori di basket richiedono frequenti salti in alto e per questo motivo è bene che questi siano veloci e agili. Un ruolo importante è dato dal core, ovvero un efficace ponte tra la parte superiore e inferiore che consenta di ottenere energia dalle gambe per creare un’enorme forza verso l’alto. La capacità di usare la velocità orizzontale data dallo spostamento che precede il salto e il trasferimento dell’energia in verticale è la caratteristica più identificativa degli atleti che sono grandi saltatori (Brittenham & Taylor, 2014).

Premettendo che Antonello ed io ci siamo impegnati a stampare ogni mese il nuovo programma da consegnare ai giocatori, in cui venivano modificati e resi più complessi gli esercizi e nonostante si sia cercato di motivare i ragazzi ad eseguirli, purtroppo non è stato sufficiente in quanto alcuni di loro non prestavano interesse nel voler migliorare i loro punti di debolezza. È anche stato comandato il materiale poiché alcuni esercizi richiedevano elastici, foam roller o altro, cosicché potessero svolgerli anche nella loro palestra quando facevano gli allenamenti specifici per il basket. Un esempio è stato il giocatore straniero JM che non dava importanza a questi esercizi e preferiva lavorare sul rinforzo. Per questo giocatore, infatti, dal grafico (Fig.24) si può osservare come il suo punteggio sia rimasto invariato e in aggiunta si sia lesionato al ginocchio durante un allenamento (ma non è stato riportato poiché ho tenuto conto solo dei giocatori nazionali per il confronto con la stagione scorsa). Tuttavia ho trovato molto interessante applicare questa metodica, poiché ho visto il vantaggio di creare degli esercizi personalizzati. Il programma FMS permette ai giocatori di avere, in forma cartacea oppure virtuale su un dispositivo portatile, il programma con le informazioni dettagliate (Allegato 7). Questo è un vantaggio per il ruolo di fisioterapista poiché svincola il dovere di crearlo, guadagnando quindi tempo. Concludo affermando che a parere mio solo attraverso uno screening dettagliato fatto ad ogni giocatore e con la creazione di un programma specifico si può arrivare a vedere grandi miglioramenti.

5.3 L’FMS e i suoi punti critici nell’applicabilità in campo riabilitativo

In una revisione odierna degli screening esistenti per la predittività degli infortuni si riscontra un certo numero di problemi metodologici (McCunn et al., 2016) come: il campione di dimensione ridotta, la mancanza di informazioni descrittive o informazioni sui partecipanti, la definizione ambigua di lesione, la mancanza di rapporti sul tempo di esposizione e il rischio di BIAS (qualunque fatto che può alterare la validità dei risultati in una ricerca). Questi fattori, combinati con la scarsità di ricerche su questo argomento, rendono difficile trarre conclusioni sull’affidabilità e capacità predittiva degli screening di movimento. Questi, che compaiono nella letteratura scientifica, attualmente non hanno prove sufficienti per giustificare l’etichetta dello "strumento capace di predire un
infortunio” (Chimera & Warren, 2016). Partendo da questa asserzione, mi sento di giustificare il motivo per cui ho affiancato uno strumento come FMS alla mia pratica clinica. L’FMS da uno studio molto recente è stato identificato come il test di screening più comunemente adoperato per l’identificazione prospettica del rischio di infortunio, ma la capacità predittiva rimane ancora ampiamente dibattuta (Philp et al., 2018). Nonostante la sua affidabilità non sia accertata, io sostengo la sua utilizzazione, poiché anche se lo screening non ha un’alta sicurezza per determinare il rischio di lesioni, aiuta il fisioterapista a prescrivere esercizi adeguati alfine di migliorare il livello di forma fisica di un individuo sostenendo i pazienti a identificare e migliorare le loro aree di carenza. Inoltre, è importante ricordare che l’obiettivo del test FMS è quello di identificare le persone che necessitano di un’ulteriore valutazione poiché determina asimmetrie, squilibri e rischio di lesioni, che è ben diverso da uno strumento clinico diagnostico (Bonazza, Smuin, Onks, Silvis, & Dhawan, 2017).

Qui di seguito elencherò i diversi punti che sono stati critici da autori e che a parere mio possono essere migliorati per poi arrivare all’utilizzo adeguato di uno strumento predittivo nel nostro ambito. I consigli che posso dare sono in base a quanto ho osservato durante quest’ultimo anno e grazie alle nozioni apprese durante i miei studi.

1) Dimensione del campione

La dimensione del campione, ovvero la variabilità del numero di individui in uno studio può spiegare la mancanza di associazione tra il punteggio FMS e lesione se ridotta (Philp et al., 2018). Nel mio case report, e probabilmente in altri molti casi, il numero di giocatori presi in analisi è troppo piccolo per notare un’associazione significativa tra punteggi e infortuni. A tal riguardo, però, lo scopo del mio lavoro non era dimostrare se c’era o meno la relazione come in uno studio sperimentale, bensì di osservare e analizzare l’utilizzo di questo strumento.

2) Definizione di infortunio e classificazione delle lesioni

Attualmente le diverse definizioni di infortunio e di lesione limitano potenziali conclusioni relative all’analisi dei dati (Dorrel, Long, Shaffer, & Myer, 2015). Infatti, leggendo svariati documenti, mi sono accorta che la variabilità nella classificazione delle lesioni rende difficile confrontare i risultati tra ogni studio in quanto non c’è un criterio stabilito da seguire. Per questo motivo ho stabilito io stessa una definizione prima di iniziare a registrare i dati alfine di non soffermarmi su informazioni superflue.

3) Tempo di esposizione e carico di allenamento

Questi due fattori rappresentano variabili confondenti e molto influenti che sono essenziali per trarre conclusioni significative. Minore è il tempo che un giocatore spende per allenarsi e giocare, minore è l’opportunità di ferirsi. Nel mio studio, quando ho creato i questionari, ho inserito domande che riguardano il tempo di allenamento e il tempo di gioco di ogni singolo giocatore così da avere in chiaro se questi potevano avere una certa influenza sul rischio di lesioni. Come pensato, i giocatori che si sono infortunati erano quelli che giocavano di più e quindi più esposti a rischio di infortuni, come ad esempio DA e MM che giocavano almeno 20 minuti a partita (vedi Tab. 2 e 3 e Allegato 6).

4) Periodo di osservazione

Definire la durata del periodo di osservazione per consentire la valutazione contestuale dei risultati è molto importante per poter fare dei paragoni tra gli studi.
Durante tutto il mio lavoro non ho mai letto niente a riguardo e per questa ragione ritengo sarebbe più opportuno che venisse definita una durata minima. Nel mio caso, la mia ricerca ha avuto una durata totale di circa 12 mesi, iniziando dal momento in cui sono stati effettuati i test iniziali pre stagionali fino a quelli finali. All’interno di questi 12 mesi, poi, per un periodo di 8 mesi mi sono occupata della registrazione degli infortuni, i quali sono iniziati a fine settembre e si sono protratti fino a maggio.

5) Sistema di registrazione

Un preciso sistema di registrazione, in cui vengano prese in considerazione lesioni e in cui tutti gli infortuni siano documentati correttamente, è un prerequisito essenziale negli studi sui fattori di rischio. In questo ambito un altro problema da considerare è che se il responsabile della registrazione delle lesioni conosce i punteggi di screening del movimento, può esistere un elemento di BIAS. Idealmente, l’individuo che registra l’evento d’infortunio non dovrebbe essere a conoscenza del risultato dello schermo di movimento. Inoltre le registrazioni dovrebbero essere fatte da una persona competente che possa chiarire le dinamiche del trauma descrivendo l’avvenimento. Durante la mia esperienza sono stata io a mantenere il contatto con Antonello e il fisioterapista della squadra, così da poter registrare tutti i dati e, se ne avevo bisogno, domandavo direttamente ai giocatori. In questo modo ho potuto segnalare in tempo reale quanto accadeva nel corso della stagione.

6) Valutazione

Nel nostro lavoro si richiede di avere degli indicatori di efficacia e quindi misure oggettivabili. Contrariamente a questo, il test FMS è costituito da una valutazione soggettiva. Difatti, come molti autori avevano già citato, ad esempio Brown, i test funzionali prevedono la valutazione soggettiva dei fattori di rischio intrinseci come: il range di movimento (ROM), la forza muscolare, le asimmetrie, l’equilibrio e la consapevolezza cinestetica. Quando si osservano limiti o disfunzioni nei movimenti del soggetto, sono limitazioni puramente osservative rispetto alle misurazioni oggettive e quindi non quantifica nessuno di questi parametri in unità assolute (Philp et al., 2018). Aspetti come questo fanno sì che l’FMS sia uno strumento più soggettivo, ma è stata anche dimostrata la sua utilità e validità per cercare i limiti che potrebbero predisporre agli infortuni. In aggiunta, dato dalla poca precisione, quello che suggerisco di fare è prendere qualche appunto su quanto osservato marcandolo con il segno dell’asterisco (*) ed eventualmente misurare con centimetro e goniometro in modo che poi si possa avere qualche indicatore di efficacia in più. Importante ricordare che questo test FMS è consigliato applicarlo in periodo pre-stagionale e che è ben diverso dai test tradizionali, i cui obiettivi sono valutare le abilità specifiche ed eventualmente identificare le lesioni e non prevedere le lesioni future (Busch, Clifton, Onate, Ramsey, & Cromartie, 2017).

7) I 7 movimenti

Un motivo per cui non è stato in grado di prevedere lesioni in alcune attività sportive, secondo l’autore Bond, è perché mirano a disfunzioni di mobilità grossolana e che possono differire notevolmente dai meccanismi che causano lesioni negli sport (Bond et al., 2017). A questo proposito, oltre a Frost e Beardley già citati nel capitolo precedente, anche l’autore Yeung e Bond suggeriscono di migliorare la ricerca di specifici meccanismi di movimento che creano lesioni così da ricreare le condizioni in cui si verificano. I test effettuati per avere un’idea della performance devono essere progettati per replicare da vicino l’attività normale dei giocatori, come ad esempio valutare gli atleti in uno stato di affaticamento neuromuscolare e effettuare le
valutazioni ad una maggiore intensità variando il carico o la velocità (Yeung et al., 2016). A parere mio, dato che attualmente nessuno degli screening di movimento identificati dispone di sufficienti prove a supporto per giustificare la propria annunciazione come strumenti di previsione di infortuni, sarebbe meglio avere uno strumento semplice come questo attraverso il quale sia possibile notare una disfunzione prima di iniziare qualsiasi tipo di attività sportiva. In seguito, se fosse necessario, sarebbe opportuno indagare con l’apporto di altri strumenti e valutazioni.

8) Punteggio
Anche l’uso del punteggio composito FMS (vedi Fig. 9) è stato messo in discussione dal momento che non è un costrutto unitario e, di conseguenza, può essere un valore fuorviante e potrebbe non essere abbastanza discriminatorio (Hammes, aus der Fünten, Bizzini, & Meyer, 2016). Per essere affidabile, la scala dovrebbe assegnare categorie esclusive ai giocatori, i quali, però, possono essere assegnati a più categorie, dal momento in cui i punteggi finali sono formati da due punteggi. Un esempio concreto di questa problematica lo ritroviamo nel test della mobilità della spalla, in cui il giocatore potrebbe ottenere il punteggio di 2 sia per la destra che per la sinistra sentendo però dolore nel test clearing ottenendo un final score di 0. Quindi, maggiore attenzione dovrebbe essere prestata al punteggio di ogni movimento (Raw score), piuttosto che al punteggio totale (Final score) durante l’interpretazione (Li, Wang, Chen, & Dai, 2015). Per quanto mi riguarda, questa “scala di classificazione” applicata può essere considerata abbastanza soggettiva da chi la sta usando (soprattutto il punteggio 2), dato che il numero elevato di variabili che il valutatore deve considerare rende complessa la valutazione e potrebbe anche essere ampliata affinché si possa essere più precisi. Il programma FMS si basa solo sul punteggio finale, ma comunque potrebbe essere utile tenere in considerazione anche gli altri punteggi, come quello di Raw score, e per fare questo sarebbe sufficiente rientrare nel sistema e guardare quello che è stato registrato. Il sistema FMS è l’unico screening di movimento che ha costantemente dimostrato una buona affidabilità intra-valutatore e inter-valutatore, come già spiegato nel Capitolo 5.1 e similmente all’applicabilità di test clinici in ambito riabilitativo è sempre importante rendere attenti i valutatori ai punti chiave che devono osservare, in modo che tutti quelli che lo applicano lo facciano in uguale modo.

9) Fattori di rischio lesione
Affinché si capisca se un soggetto sia a rischio di una lesione è fondamentale che le informazioni o i vari meccanismi vengano individuati (R. Bahr & Holme, 2003). Le lesioni pregresse sono un fattore di rischio significativo per i vari infortuni e il test non sempre li individua rendendo, secondo me, una buona anamnesi necessaria. Il termine che definisce il meccanismo della lesione, cioè la biomeccanica, come ad esempio una distorsione da caviglia in inversione, non basta e per essere completa deve tener conto di tutti gli eventi che hanno portato alla situazione in cui si è verificato l’infortunio, ovvero quei fattori intrinseci come un precedente infortunio, un ridotto ROM, una scarsa forza, una riduzione della propriocettiva, un aumento della lassità articolare, una formazione del tessuto cicatriziale nella muscolatura (una zona/area meno aderente con maggiore rischio di lesione). Inoltre, anche la presenza di infortuni precedenti portano a un modello di movimento inefficace e gli individui che hanno subito un infortunio possono avere una diminuzione delle afferenze propriocettive, se non trattati o trattati in modo inappropriato (Nadler et al., 2002). Come possiamo notare dal mio progetto, i tre atleti che si sono infortunati nella Tabella 2 erano a rischio infortunio secondo il test e avevano importanti storie di infortuni in passato. Per la
riflessione che ho fatto ho tenuto in considerazione lo schema proposto da Meeuwisse (Capitolo 3.1.1), il quale spiega come si scatena un infortunio (fattore intrinseco/estrinseco ed evento scatenante). Essendomi trovata bene con questo schema, ritengo opportuno consigliarlo ed eventualmente sarei propensa all’aggiunta di uno strumento simile come aiuto nell’anamnesi e per il registro di infortuni. In aggiunta, ritengo anche importante sottolineare il fatto che lo strumento non può predire infortuni traumatici extrapersonali a questo proposito alcuni atleti possono essere più inclini agli infortuni rispetto ad altri, come ad esempio per uno stile di gioco più aggressivo, il quale però non è influenzabile.

10) Margine di errore

Il potere di uno studio è la capacità di dimostrare che esiste un’associazione tra un fattore di rischio e l’infortunio dipendendo da quanto accuratamente il fattore può essere misurato alla base line. Sapendo che un numero di fattori interni ed esterni può potenzialmente influenzare il rischio di lesioni, la sfida sta nel decidere quali fattori misurare e come misurarli. I fattori non modificabili possono essere di interesse, ma anche quelli modificabili. Idealmente questi elementi dovrebbero essere più facili da misurare con precisione, ma personalmente ho trovato questo punto abbastanza complesso e potrebbe essere utile avere delle linee guida prestabilite. Il margine di errore di misurazione deve sempre essere misurato con la pianificazione dello studio per poi avere dati rilevanti statisticamente (R. Bahr & Holme, 2003).

Secondo diversi autori come Letafatkar, Cook, Brown, sono necessarie più ricerche per migliorare l’FMS e introdurlo nella preparazione pre-stagionale, il quale grazie al suo basso costo e alla sua semplicità dovrebbe essere considerato dai clinici per le ricerche future. Chuchna afferma che se lo strumento di screening fosse affidabile, anche i medici potrebbero essere sicuri nelle loro valutazioni e iniziare ad utilizzare questo nuovo approccio per rivalutare l’efficacia dei loro interventi attraverso la rivalutazione della capacità del paziente di svolgere i 7 item (Cuchna, Hoch, & Hoch, 2016).

5.4 I vantaggi dell’utilizzo dell’FMS in campo riabilitativo

I vantaggi dell’utilità di questo strumento risiedono nella sua semplicità e nella sua praticità. Il test si compie in circa 10 minuti grazie al meccanismo di punteggio relativamente rapido e facile (Cook, 2010; Letafatkar, Hadadnezhad, Shojaedin, & Mohamadi, 2014; Frost et al., 2015). In poco tempo si individuano i punti deboli del nostro corpo, ovvero lo squilibrio tra mobilità e stabilità. Inoltre, l’FMS offre soluzioni per migliorare i deficit riscontrati fornendo un programma di esercizi correttivi personalizzati. Tutto questo è un aiuto al fisioterapista che può seguire questo schema creato appositamente ed eventualmente attuare delle modifiche.

Il monitoraggio del movimento funzionale può rilevarsi utile soprattutto per mantenere basso il rischio di infortunio e fornire l’opportunità a fisioterapisti, preparatori atletici e allenatori di valutare un paziente in qualsiasi momento. Le discipline che possono amministrare questo test in modo affidabile sono molteplici, il che consentirà un terreno comune, migliorando la comunicazione interprofessionale e la collaborazione tra le parti. La capacità di utilizzare l’FMS come strumento affidabile in un ambiente interdisciplinare lo rende molto interessante perché unifica un linguaggio, il quale spesso è diverso in differenti ambiti, e propone un parametro di riferimento (Bonazza et al., 2017). Attraverso questa esperienza ho potuto vivere e vedere con i miei occhi la collaborazione tra diverse figure, la quale spesso viene un po’ a mancare. Nei questionari consegnati ai giocatori
a inizio stagione, oltre a ricavare i dati necessari per conoscerli meglio e sapere la loro storia di infortuni, è emersa chiaramente la loro visione dell’intero team (Tab.2). Ho potuto accertare la mia idea iniziale, ovvero la mancanza di comunicazione e di conseguenza una presa a carico incompleta, la quale potrebbe essere migliorata attraverso l’uso dello strumento.

Anche osservare o venire a conoscenza di squadre, in cui la media del punteggio dei giocatori è alto, può essere un consiglio prezioso e un incentivo per modificare la loro preparazione atletica. La conoscenza dei modelli inefficienti può aiutare a progettare i programmi di allenamento con il vantaggio di consentire all’individuo di partecipare a sforzi atletici di livello superiore e di allenarsi per quegli sforzi in un modo in cui sono evitati i modelli errati che predispongono a una lesione e quindi periodi prolungati di stop. Come abbiamo visto nel capitolo 3.3.1.8 la piramide alla performance deve essere ben strutturata affinché l’atleta abbia ottime prestazioni. Tutto questo si ottiene grazie a un duro lavoro durante la preparazione ed è importante tener presente che l’allenamento specifico per uno sport prevede l’allenamento dei sistemi energetici, le basi della forza e della potenza, e la meccanica del movimento richiesta per il tuo particolare sport e a tutto questo può essere integrato un sistema che valuti e monitori nel tempo la qualità del movimento.

Sahiwala consiglia l’uso clinico dell’ FMS reputandolo uno strumento molto utile nel campo della riabilitazione e soprattutto per la figura del fisioterapista (Sahijwala et al., 2016) e sul nostro territorio, nell’ospedale Ars medica, è già stato applicato (giornale sport, n.129): “L’esperienza clinica dimostra che “l’FMS funziona: se un giovane atleta lamenta dolori alle ginocchia, qualche tempo dopo una distorsione ad una caviglia non trattata seriamente, noterà grazie allo screening una instabilità funzionale della caviglia. La quale costringe le ginocchia a elevati sforzi, sovraccaricando e creando dolore. Il problema viene poi curato con esercizi specifici del programma FMS”.

6. Conclusioni

Con questo lavoro di Bachelor volevo raggiungere gli obiettivi che mi ero prefissata nei primi capitoli 1.2.1 e 1.2.2. Giunta alla fine del lungo percorso posso affermare con sicurezza, dopo le analisi fatte, di averli raggiunti.

Il punto da cui ero partita per redigere questa tesi era la mia curiosità su come uno strumento, che valuta la mobilità, la forza e la coordinazione, possa influenzare la prestazione sportiva e in che modo possa prevedere il rischio di infortunio. Ebbene sulla base delle analisi fatte, lo strumento FMS si è dimostrato capace di motivare il suo utilizzo tramite la teoria, mentre i risultati sugli studi effettuati sono tutt’oggi molto contrastanti: c’è chi conferma la sua validità e altri che la confutano.

Nella parte teorica è stato essenziale capire il ruolo dello strumento, la sua nascita e il suo utilizzo. Tramite le ricerche è stato vantaggioso informarmi sull’eziologia degli infortuni, sui fattori di rischio e soprattutto sul ruolo del controllo motorio che viene valutato nei 7 item. Per la parte pratica i giocatori presi in considerazione avevano dai 17 ai 32 anni e, riallacciandomi ai dati forniti della SUVA, è proprio in questa fascia di età che avvengono gli infortuni maggiori. Malgrado il campione esaminato sia stato piccolo ho potuto analizzare i dati e arrivarvi a una conclusione. Per la parte concernente l’analisi sono riuscita a mettere in pratica e a migliorare la mia capacità di ragionamento clinico come anche la capacità osservativa, inoltre ho individuato uno schema molto preciso per il registro degli infortuni nei giocatori grazie alle conoscenze ricavate dal mio studio, dalla lettura e dalle esperienze passate.

Grazie a queste due parti ho potuto rispondere alla mia domanda di ricerca, ovvero se lo strumento FMS possa essere utile da applicare in campo riabilitativo. Sono diverse le ricerche che hanno valutato l’FMS e altri strumenti simili, ma nonostante questo le basi scientifiche non sono sufficienti per convalidare il suo utilizzo. Mi sento quindi di affermare che da quanto analizzato e osservato questo strumento non è adatto solo a personal trainer e allenatori, ma personalmente lo applicherei anche nella pratica clinica. Un fisioterapista che segue una squadra sportiva può utilizzare questo strumento nel percorso del ragionamento clinico poiché è in grado di individuare i punti carenti nel movimento e quindi avere dei parametri di rivalutazione. I prerequisiti per l’utilizzo sono avere un buon occhio clinico o possedere le conoscenze anatomiche e biomeccaniche del movimento per poter notare un eventuale errore. Esso, associato a una serie di valutazioni effettuate dal fisioterapista, può permettere un migliore approccio al paziente sportivo. Escluderei quindi il pieno affidamento su di esso, vista la difficoltà riscontrata nel prevedere il rischio di infortuni negli atleti. A parere mio, grazie a un Bachelor in fisioterapia, si acquisiscono le capacità per adoperarlo nel modo corretto, mentre per chi arriva da un’altra professione ho consiglierei la formazione fornita dall’FMS. Lo strumento non è perfetto, come visto nella discussione si possono attuare dei miglioramenti; pure una parte metodologica supplementare sarebbe sicuramente utile. La capacità del test, attraverso l’esecuzione dei 7 specifici movimenti, fornisce un punto d’inizio sia per la riabilitazione che per il miglioramento delle prestazioni atletiche.

L’obiettivo di avvicinamento all’ambito della riabilitazione sportiva è stato parzialmente raggiunto, ho fatto il possibile per seguire qualche allenamento in palestra a Taverne da Antonello, in palestra a Massagno e anche partecipare a qualche partita, ma non è stato facile organizzarsi e il tempo a disposizione non combaciava con tutti gli altri impegni. Sicuramente l’aspetto comunicativo l’ho migliorato poiché sono rimasta in contatto prima
di tutto con Antonello e poi anche con il fisioterapista e i giocatori per un lungo periodo. Ho anche avuto la possibilità di vedere la collaborazione interprofessionale tra le diverse figure, purtroppo loro non hanno partecipato all’utilizzo dello strumento, di conseguenza se esso poteva essere di aiuto per la comunicazione non è stato sfruttato in maniera soddisfacente. Ammetto che non sono così soddisfatta dell’aderenza al progetto da parte dei giocatori. Alcuni atleti erano troppo impegnati a voler migliorare le prestazioni e quindi a lavorare meno sui punti deboli stabiliti dall’FMS, ma come visto nella piramide della performance, seguendo questo schema non si ottengono grandi risultati. Se potessi tornare indietro nel tempo contextualizzierei meglio lo strumento e motiverei il suo uso in un’ottica di prevenzione degli infortuni non traumatici nello sport, un’altra soluzione poteva consistere nel presentarmi più spesso agli allenamenti così da incoraggiare i giocatori a svolgere il programma FMS.

I giocatori della prima squadra della SAM quest’anno, dopo diversi anni, si sono classificati tra le prime 4 squadre svizzere e hanno potuto accedere alla semifinale di SBL Cup, ovvero la “Final Four” a Montreux. Sono partiti molto entusiasti, ma senza l’importante presenza di DA e MM perché entrambi si sono infortunati prima. In qualche modo la preparazione effettuata ha portato i giocatori a una buona prestazione in campo. Non si può affermare con sicurezza, ma sicuramente il contributo dato da Antonello e il lavoro svolto secondo il programma FMS ha portato i suoi frutti. Se l’intero programma venisse ancora applicato si potrebbe senz’altro continuare con la ricerca e registrando sempre gli infortuni vedere come si presenterebbe il grafico.

Riallacciandomi al pilastro fondamentale del sistema FMS, il cui obiettivo è che tutti si muovano bene e si muovano spesso, nel complesso lo screening del movimento può essere utile ai fisioterapisti per migliorare l’approccio all’atleta. Soprattutto lo screening periodico del movimento e l’adeguato programma correttivo con l’allenamento funzionale sono preziosi per creare una capacità di movimento migliore che mira alla qualità e non alla quantità.

Concludendo, la mia esperienza in questo ultimo anno mi ha permesso di migliorare alcuni punti deboli come l’insicurezza e la timidezza, poiché ho dovuto confrontarmi con altre figure professionali e atleti di diverse età. Sono molto soddisfatta del lavoro svolto e sento di essere cresciuta sia personalmente che professionalmente. Il lavoro di tesi è stata un’occasione per dimostrare la mia capacità di pensiero prima di completare il mio percorso formativo.
7. Ringraziamenti

È una sensazione inspiegabile quella che si prova in questo momento, che segna la fine di un percorso e l’inizio di qualcosa di molto stimolante. Vorrei utilizzare ancora qualche parola per ringraziare tutte le persone che mi sono state vicine nel raggiungimento di questo traguardo.

Innanzitutto vorrei gentilmente ringraziare il mio direttore di tesi Zanardi Luca per la sua disponibilità e per avermi guidata durante tutto il lavoro, come pure Antonello e tutta la prima squadra della SAM per avermi dato l’occasione di seguirli per l’intera stagione e per aver aderito al mio progetto.

Ringrazio la mia migliore amica Belinda, che nonostate i nostri studi in facoltà diverse, è stata un punto di riferimento e di grande aiuto durante la stesura finale del lavoro di tesi.

Inoltre sono grata anche al mio ragazzo Emanuele, che con infinito amore e comprensione mi ha dato le forze e mi è stato vicino in ogni momento, come pure la mia famiglia, la quale mi ha permesso di realizzare questo sogno e ha sempre creduto in me.

Infine ringrazio Gabriella per la lettura finale e le correzioni fatte e Maja per avermi dato il consenso di pubblicare le fotografie.
8. Bibliografía

8.1 Libri

8.2 Articoli

8.3 Letteratura grigia

8.4 Iconografia

Figura 1
Creatata personalmente

Figura 2

Figure 3 – 4
Creatata personalmente

Figure 5 - 10

SUVA (2017) Statistique des accidents LAA

Figura 11

Figure 12 – 19
Creatata personalmente

Figura 20

Figure 21 – 24
Creatata personalmente

Figure 25 – 30

Maja Pazur
9. Allegati

9.1 Allegato 1 - Questionario

ANAMNESI

Informativa
Con la presente si intende proporre un questionario per il progetto di tesi “Nel campo riabilitativo l’applicabilità dell’ FMS”. Questo questionario si pone come obiettivo quello di indagare gli infortuni avvenuti durante la stagione sportiva 2016/2017. I risultati di questo questionario, in forma anonima, saranno utilizzati per la realizzazione dell’elaborato di tesi. La titolare, la sottoscritta, Romina Sangiacomo, garantisce rispetto della normativa della privacy.

Dati anagrafici

<table>
<thead>
<tr>
<th>Nome e Cognome</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data di nascita</td>
<td></td>
</tr>
<tr>
<td>Luogo di nascita</td>
<td></td>
</tr>
<tr>
<td>Professione</td>
<td></td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>Altezza (cm)</td>
</tr>
</tbody>
</table>

Anamnesi generale (segnala con un cerchio)

<table>
<thead>
<tr>
<th>Fumo?</th>
<th>Mai</th>
<th>Meno di 5</th>
<th>Da 6 a 20 o +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentazione?</td>
<td>Libera</td>
<td>Medica</td>
<td></td>
</tr>
<tr>
<td>Alcolici?</td>
<td>Mai</td>
<td>Più di 3gg/sett</td>
<td>Tutti i giorni</td>
</tr>
<tr>
<td>Superalcolici?</td>
<td>Mai</td>
<td>Più di 3gg/sett</td>
<td>Tutti i giorni</td>
</tr>
<tr>
<td>Allergie?</td>
<td>Si (quali?)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Problemi cardiovascolari?</td>
<td></td>
<td>(ipertensione, diabete, colesterolo alto,..)</td>
<td></td>
</tr>
<tr>
<td>Uso di farmaci? (Movito? Quali? Frequenza?)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gioca a basket da quanto tempo? Ruolo?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altri sport praticati? (da quanto e per quanto tempo)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| FMS | |
| Fumatore | |

Punteggio
Anamnesi remota

1. Infortuni precedenti: specificare quale arto è stato coinvolto, se destro o sinistro

<table>
<thead>
<tr>
<th>Zona dell’infortunio</th>
<th>Quando è avvenuto?</th>
<th>Tipo di infortunio</th>
<th>Durata dello stop</th>
<th>Fisio/visite mediche/operazioni (indicare Sì o No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caviglia</td>
<td></td>
<td>Distorsione (inversione/eversione), contusione, frattura, lesione ai legamenti (I, II, III grado)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginocchio</td>
<td></td>
<td>Lesione legamento crociato anteriore/posteriore /collaterale, mediale/laterale Menischi, Distorsione, lussazione rotula, frattura, contusione</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscolare (coscia anteriore)</td>
<td></td>
<td>Stiramento, strappo, DOMS, contrattura, contusione, crampo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscolare (coscia posteriore)</td>
<td></td>
<td>Stiramento, strappo, DOMS, contrattura, contusione, crampo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parte inferiore della gamba (polpaccio/muscolare)</td>
<td></td>
<td>Stiramento, strappo, DOMS, contrattura, contusione, crampo, lesione tendine d’achille</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inguine</td>
<td></td>
<td>Stiramento, strappo, DOMS, contrattura, contusione, crampo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piede</td>
<td></td>
<td>Fratture, contusioni, fascite plantare/sperone calcaneare/metatarsalgia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testa</td>
<td></td>
<td>Commozione cerebrale/trauma cranico, trauma lacero-contusivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tronco</td>
<td></td>
<td>Stiramento, strappo, contusione, fratture vertebrali, protrusione/ernie sintomatiche o no, radicolopatie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arto superiore (spalla/gomito/polso)</td>
<td></td>
<td>Fratture, lussazione, sublussazione, instabilità, lesione cuffia dei rotatori, stiramento strappo, contusione</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anamnesi sportiva stagione 2016/17

1. Numero e durata degli allenamenti settimanali (compresa partita)

2. Quanto giochi mediamente durante una partita? (segnala con una crocetta)
 - Meno di 5 minuti
 - Tra i 5 e i 10 minuti
 - Tra i 10 e i 20 minuti
 - Oltre i 20 minuti

3. Hai subito infortuni durante questa stagione? (infortuni che ti abbiano fatto saltare almeno una partita/tutti gli allenamenti di una settimana)
 - Sì
 - No

4. Se sì quanti? Quando? descrivi arto destro o sinistro

5. Che tipo di infortunio/infortuni hai subito? Traumatico da contrasto/a traumatico
 Qual è la diagnosi medica?

6. Descrizione del trauma
 Quando è avvenuto l’infortunio? (partita/allenamento)
 In che circostanza è avvenuto l’infortunio? (contrasto con un compagno/avversario, atterraggio dopo un salto, scatto, cambio direzione, torsione sul posto, ...)

7. In seguito all’infortunio per quanto tempo sei stato fermo? (descrivere se hai utilizzato ausili dopo l’infortunio es. gesso, stampelle, tutori ecc.)
 - < 1 settimana
 - 1 settimana - 1 mese
 - > 1 mese
 - > 3 mesi

8. Hai dovuto subire interventi prima di tornare a giocare? Se sì, che tipo di intervento? e per quanto tempo sei stato a riposo?
9). Hai avuto di nuovo lo stesso infortunio? Se, sì dopo quanto tempo?

..
..

10). Hai visitato un fisioterapista dopo l'infortunio?

[] Sì
[] No

11). In seguito alle sedute dal fisioterapista sono stati eseguiti esercizi simili anche durante gli allenamenti?

..
..
..

12). I consigli dati dal fisioterapista coincidono con alcune delle attività fatte durante gli allenamenti?

..
..
..
..

13). C'è stato un piano di allenamento ben organizzato per il tuo caso o una preparazione specifica prima del tuo rientro in campo? Motiva.

..
..
..
..

..
..
..
..

15). Pensi che ci sia stata una buona comunicazione tra queste figure? Motiva.

..
..
..
..

4
9.2 Allegato 2 - Infortuni non professionali in Svizzera

Assurance contre les accidents non professionnels (AANP + AAC): activité lors de l'accident

Extrapolation des résultats de l'échantillon

<table>
<thead>
<tr>
<th>Activité</th>
<th>Cas acceptés</th>
<th>Myriades des années 2011-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sur le chemin du travail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Séjour dans des maisons et sur des terrains privés</td>
<td>19 757</td>
<td>19 999</td>
</tr>
<tr>
<td>Séjour dans des maisons et sur des terrains privés</td>
<td>21 550</td>
<td>18 713</td>
</tr>
<tr>
<td>Séjour dans des maisons et sur des terrains privés</td>
<td>19 413</td>
<td>98</td>
</tr>
<tr>
<td>Séjour dans des maisons et sur des terrains privés</td>
<td>24</td>
<td>191</td>
</tr>
<tr>
<td>Régime, soins, auxiliaires, maîtres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environnement, transport de poids lourds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trafic ferroviaire, routes, villes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat, résidences de service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouvriers audiobus, autobus, taxis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hôpitaux, soins infirmiers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infortuni non professionali in Svizzera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assurance contre les accidents non professionnels (AANP + AAC): activité lors de l'accident</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapolation des résultats de l'échantillon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sur le chemin du travail</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Régime, soins, auxiliaires, maîtres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environnement, transport de poids lourds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trafic ferroviaire, routes, villes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat, résidences de service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouvriers audiobus, autobus, taxis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hôpitaux, soins infirmiers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infortuni non professionali in Svizzera</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Seules les 88 catégories les plus fréquentes de l'année la plus actuelle sont indiquées.

62
INFORTUNI NEL BASKET: COSTI

NBUV Basketball, UVG insgesamt 1): Laufende Kosten nach verletztem Körperteil und Verletzungsart

<table>
<thead>
<tr>
<th>Verletzungsart (1)</th>
<th>(1) Frakturen</th>
<th>(2) Verletzungen im Bereich der Muskulatur, Sehnen, Gelenke und Bindegewebe</th>
<th>(3) Kontusions- und Schürferletzungen</th>
<th>(4) Unfälle ohne Verletzung</th>
<th>(5) Übrige und nicht näher bezeichnete Verletzungen</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Schädel, Hirn</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>02 Gesicht, Gehörgang, Nasenlöcher</td>
<td>0.8%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>1.4%</td>
</tr>
<tr>
<td>03 Augen, Ohren, Nasen- und Mundhöhle</td>
<td>0.3%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>1.4%</td>
</tr>
<tr>
<td>04 Hals, obere Körperregion oder nicht näher bezeichnet</td>
<td>0.3%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>1.4%</td>
</tr>
<tr>
<td>05 Thorax</td>
<td>0%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>06 Zahl und Kosten und Schäden</td>
<td>0.4%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.1%</td>
<td>0.3%</td>
<td>0.8%</td>
</tr>
<tr>
<td>07 Schulter, Oberarm</td>
<td>1.8%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>2.9%</td>
</tr>
<tr>
<td>08 Brust und Wirbelsäule</td>
<td>1.8%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>0.5%</td>
<td>0.1%</td>
<td>2.9%</td>
</tr>
<tr>
<td>09 Nabelgegend, Becken, Hüfte, Knie, Fersen</td>
<td>4.8%</td>
<td>3.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>18.9%</td>
</tr>
<tr>
<td>10 Hände, Ellenbogen, Unterarm</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0.3%</td>
</tr>
<tr>
<td>11 Hüfte und Oberschenkel</td>
<td>2.6%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>2.6%</td>
</tr>
<tr>
<td>12 Beine</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.3%</td>
</tr>
<tr>
<td>13 Unterschenkel, Knöchel, Fuß</td>
<td>0%</td>
<td>0.1%</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.2%</td>
<td>22.2%</td>
</tr>
<tr>
<td>14 Leibeserweiterungen, nicht näher bezeichnet</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>15 Strukturellen Schäden oder nicht näher bezeichnet</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>16 Drogenkonsum, Suizid, Verletzungsfolgen</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>17.8%</td>
<td>14.3%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Allegato 4 – Dati generali sugli infortuni nel basket in Svizzera

NBUV Basketball, UVG insgesamt 1), 2011-2015

<table>
<thead>
<tr>
<th></th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundzahlen (2011-2015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neu registrierte, anerkannte Fälle jährlich</td>
<td>3'056.0</td>
<td>597'212.2</td>
</tr>
<tr>
<td>Anerkannte Invalidenrenten jährlich</td>
<td>0.6</td>
<td>33.4</td>
</tr>
<tr>
<td>Anerkannte Todesfälle jährlich</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Laufende Kosten jährlich (Mio. CHF)</td>
<td>8.4</td>
<td>2'300.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kosten pro Fall (Regijahre 2007-2011 Stand +4 Jahre)</th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosten pro Fall (Stand +4 Jahre)</td>
<td>2'900</td>
<td>3'100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schwere der Fälle (Regijahre 2007-2011 Stand +4 Jahre)</th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil der Fälle mit entschädigten Tagen</td>
<td>35%</td>
<td>38%</td>
</tr>
<tr>
<td>Anteil schwere Unfälle (>90ET, Renten, Todesfälle)</td>
<td>2.5%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Anteil Schwerstenfälle (>360ET, Renten, Todesfälle)</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beteiligte Gegenstände (Stand 2015, Mehrfachzählungen!)</th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Gegenstand beteiligt</td>
<td>45%</td>
<td>41%</td>
</tr>
<tr>
<td>Spiel-, Turn- u. Sportgeräte</td>
<td>17%</td>
<td>12%</td>
</tr>
<tr>
<td>>> Spiel-, Turn- u. Sportgeräte</td>
<td>0.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>>> Bälle</td>
<td>16%</td>
<td>10%</td>
</tr>
<tr>
<td>Personen</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>>> Personen</td>
<td>0.7%</td>
<td>0.6%</td>
</tr>
<tr>
<td>>> Gegen-, Mitspieler</td>
<td>29%</td>
<td>39%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hergänge (Stand 2015, Mehrfachzählungen!)</th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgehen, abgehen, abrutschen (v. Personen)</td>
<td>46%</td>
<td>46%</td>
</tr>
<tr>
<td>Getroffen werden, Rückschlag, verschüttet werden</td>
<td>37%</td>
<td>41%</td>
</tr>
<tr>
<td>Anstossen an etwas, anschlagen, anessen</td>
<td>19%</td>
<td>23%</td>
</tr>
<tr>
<td>Sich überlasten (plötzl. oder dauernde Einwirkung)</td>
<td>11%</td>
<td>11%</td>
</tr>
<tr>
<td>Auf, in, neben etwas treten</td>
<td>2.5%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umggebung (Stand 2015)</th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Öffentliche Gebäude</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>Nutzfläche (Landwirtschaft, Sport, Freizeit)</td>
<td>23%</td>
<td>66%</td>
</tr>
<tr>
<td>Hof, Vorplatz, Zugang, Zufahrt</td>
<td>3.3%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altersgruppen (Stand 2015)</th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-29 Jahre</td>
<td>54%</td>
<td>63%</td>
</tr>
<tr>
<td>30-44 Jahre</td>
<td>36%</td>
<td>28%</td>
</tr>
<tr>
<td>45-59 Jahre</td>
<td>8.8%</td>
<td>8.8%</td>
</tr>
<tr>
<td>60 Jahre und älter</td>
<td>0.8%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

1) Inclusiive Falle von Stellensuchenden (UVAL)
Quelle: Hochrechnung aus Stichprobe SSUV
NBUV Basketball, UVG insgesamt 1), 2011-2015

<table>
<thead>
<tr>
<th>Anteil Frauen (Stand 2015)</th>
<th>NBUV Basketball, UVG insgesamt</th>
<th>NBUV Fuss-, Hand-, Volley-, Basketball und Unihockey, UVG insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil Frauen</td>
<td>19%</td>
<td>12%</td>
</tr>
</tbody>
</table>

1) inklusive Fälle von Stellensuchenden (UVAL)

Quelle: Hochrechnung aus Stichprobe SSUV

NBUV Basketball, UVG insgesamt 1), 2011-2015

Unfallmonat (Stand 2015)

Unfallzeit (Stand 2015)

Zeitreihe der anerkannten Fälle

Zeitreihe der laufenden Kosten (in Mio. CHF)

1) inklusive Fälle von Stellensuchenden (UVAL)
Quelle: Hochrechnung aus Stichprobe SSUV
1. **Deep Squat**

Scopo
La sequenza motoria del Deep squat è presente in molti movimenti funzionali, perciò la posizione accovacciata tipica dello squat non è normalmente utilizzata tutti i giorni, ma è una componente fondamentale nell'esercizio fisico generale e per chi pratica sport. È la posizione richiesta per la maggior parte dei movimenti di potenza che coinvolgono gli arti inferiori. Per il movimento dello squat sono essenziali la mobilità delle estremità, controllo posturale e stabilità del bacino e core.

Lo squat viene utilizzato per valutare la mobilità bilaterale, simmetrica e funzionale di: anche, ginoocchia e caviglie. Le ginocchia devono essere allineate con i piedi senza il collasso in valgismo. Possono essere eseguite tre ripetizioni, ma se alla prima prova il movimento è eseguito correttamente, non è necessario eseguirne altre.

Descrizione
Il soggetto assume la posizione di partenza mettendo i piedi alla larghezza delle spalle, i piedi devono essere allineati fra di loro sui pianini sagittali. L'individuo porta la bacchetta sopra la testa, i gomiti devono avere una posizione di 90 gradi, successivamente, viene sollevata sopra la testa con la braccia tese. Da questa posizione bisogna istituire la persona a scendere lentamente in posizione di squat il più basso possibile. La posizione di squat dovrebbe essere assunta con i talloni a terra, la testa e il torace rivolti in avanti e la bacchetta sopra la testa. Le ginocchia devono essere allineate con i piedi senza il collasso in valgismo. Possono essere eseguite tre ripetizioni, ma se alla prima prova il movimento è eseguito correttamente, non è necessario eseguirne altre. Se il cliente non ottiene il punteggio pari a 3, si chiede di eseguire nuovamente il movimento ma con il kit FMS sotto i talloni per ottenere il punteggio di 2. In caso in cui non eseguano ancora soddisfatti con i talloni sollevati, il punteggio è 1.

Suggerimenti
- Si consiglia di guardare la persona lateralmente o anteriormente
- Tutti gli allineamenti devono essere rispettati anche quando i talloni sono sollevati con il kit FMS
- Non far in modo che il paziente alleni il movimento, semplicemente ripeti le istruzioni se è necessario
- Chiedere se il movimento evoca dolore
- Non interpretare il modello di movimento o il punteggio durante il test

Implicazioni dello squat profondo
La capacità di eseguire lo squat profondo richiede in catena cinetica chiusa: la dorsiflessione delle caviglie, la flessione delle ginocchia e delle anche, l'estensione della colonna vertebrale toracica e la flessione e l'abduzione delle spalle. Scarse prestazioni di questo test possono essere il risultato di diversi fattori. La limitata mobilità della parte superiore del tronco può essere attribuita in parte alla limitata mobilità gleno-omerale e toracica della colonna vertebrale o ad entrambe. La limitata mobilità degli arti inferiori include la scarsa dorsiflessione delle caviglie o una scarsa flessione delle ginocchia. Il movimento richiesto può anche essere eseguito inadeguatamente a causa di una scarsa stabilizzazione e controllo motorio.

Quando un atleta raggiunge un punteggio inferiore a 3, il fattore limitante deve essere identificato. Se un atleta raggiunge un punteggio di 2, spesso queste minimi limitazioni si verificano maggiormente con la dorsiflessione delle caviglie o l'estensione della colonna vertebrale toracica. Quando un atleta raggiunge un punteggio di 1, viene in generale detto che il paziente ha una limitata mobilità delle estremità.

Punteggio per il Deep Squat

<table>
<thead>
<tr>
<th>3 punti</th>
<th>2 punti</th>
<th>1 punto</th>
</tr>
</thead>
</table>
| La parte superiore del tronco è parallela alle tibie o più verticale | Le ginocchia sono allineate con i piedi | La parte superiore del tronco non è parallela alle tibie
| Il femore è sovra l'orizzontale | Le ginocchia non sono allineate con i piedi | Il femore è sotto l'orizzontale
| La proiezione ortogonale della bacchetta cade all'interno della lunghezza dei piedi | La proiezione ortogonale della bacchetta non cade all'interno della lunghezza dei piedi | Chiedere se il movimento evoca dolore

Suggerimenti
- Si consiglia di guardare la persona lateralmente o anteriormente
- Tutti gli allineamenti devono essere rispettati anche quando i talloni sono sollevati con il kit FMS
- Non far in modo che il paziente alleni il movimento, semplicemente ripeti le istruzioni se è necessario
- Chiedere se il movimento evoca dolore
- Non interpretare il modello di movimento o il punteggio durante il test
- In caso di dubbio dare il punteggio più basso
2. Hurdle Step

Soggetto

Il test Hurdle Step testa la meccanica del passo, la stabilità e il controllo della stazione mono-podalica. Il test è progettato per sfruttare la giusta meccanica della falcata durante il movimento del passo. Questa sequenza motrizia è uno dei componenti dell'azione e della accelerazione. Sebbene nelle attività della vita quotidiana non facciamo passi così alti, il test esporrà asimmetrie o compensazioni nel movimento di superamento di un ostacolo.

Il movimento richiede un adeguato coordinamento e una stabilità della gamba, poiché una gamba si fa carico del peso corporeo, mentre l'altra si deve muovere liberamente. Il lancio e il salto devono mantenere la stabilità e l'allineamento del corpo durante tutto il movimento. Le braccia sono ferme e sorreggono la bacchetta che si appoggia sulle spalle. In questo modo il test potrebbe valutare la staticità della parte superiore del corpo e del tronco durante il movimento. Un accessorio utilizzato nel test per superare un ostacolo è una bacchetta e un cavo misuratore per verificare un movimento della parte superiore del corpo e del tronco nel passaggio.

La documentazione clinica di queste limitazioni può essere ottenuta utilizzando misurazioni goniometriche standard delle articolazioni e test di flessibilità muscolare come il test di Thomas o il test di Kendall per l’accorciamento dei tessuti dell’anca.

Scarse prestazioni nel test possono essere risultati di diversi fattori. Quando un atleta raggiunge un punteggio inferiore a 3, il fattore limitante deve essere identificato. La documentazione clinica di queste limitazioni può essere ottenuta utilizzando misurazioni goniometriche standard delle articolazioni e test di flessibilità muscolare come il test di Thomas o il test di Kendall per l’accorciamento dei tessuti dell’anca. Precendenti test hanno rilevato che quando un atleta raggiunge un punteggio di 2, i limiti sono più spesso nella dorsiflessione delle caviglie e nella flessione dell'anca con la gamba del passo. Quando un atleta raggiunge un punteggio di 1 o meno, si suppone che esista un'immobilità relativa all'anca asimmetrica, secondaria a un bacino inclinato anteriore e ad una scarsa stabilità del tronco.

Descrizione

Prima di iniziare va misurata l'altezza della tuberosità tibiale del cliente con il tassello del FMS. L'individuo assume la posizione di partenza mettendo prima i piedi uniti e allineando le dita dei piedi al basso del cavo misuratore. L'ostacolo viene quindi regolato all'altezza della tuberosità tibiale dell'atleta (il cavo misuratore deve essere all'altezza corretta) e il cavo misuratore deve essere equilibrato. Il passaggio avviene per prima la caviglia e poi il ginocchio. La gamba mobile viene quindi riportata alla posizione iniziale. Il passaggio avviene per prima la caviglia e poi il ginocchio. Può essere eseguito fino a tre volte bilateramente. Se una ripetizione è completata bilateramente si viene dato il punteggio di 3.

Suggerimenti

- Assicurarsi che la corda sia allineata correttamente
- Dite al cliente di provare a diventar il più alto possibile
- Osservare sia frontalmente che lateralmente
- Osservare se il movimento evoca dolore
- Chiudere se il movimento è stato controllato
- Osservare se la gamba del passo è stata mantenuta in posizione estesa
- Assicurarsi che il piede della gamba portante sia in contatto con il supporto dopo ogni ripetizione
- Non interpretare il modello di movimento o il punteggio durante il test

Implicazioni dello squat profondo

<table>
<thead>
<tr>
<th>PUNTEGGIO PER HURDLE STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 punti</td>
</tr>
<tr>
<td>Anche, ginocchia e caviglia rimangono allineate sul piano sagittale</td>
</tr>
<tr>
<td>Colonna lombare non deve muoversi</td>
</tr>
<tr>
<td>Bacchetta e ostacolo devono rimanere paralleli</td>
</tr>
<tr>
<td>2 punti</td>
</tr>
<tr>
<td>C’è perdita di allineamento tra anche, ginocchia e caviglia</td>
</tr>
<tr>
<td>C’è movimento nella zona lombare</td>
</tr>
<tr>
<td>Bacchetta e ostacolo non rimangono paralleli</td>
</tr>
<tr>
<td>1 punto</td>
</tr>
<tr>
<td>Si verifica contatto tra piede e ostacolo</td>
</tr>
<tr>
<td>Si registra una perdita di equilibrio (inabili a eseguire il test)</td>
</tr>
</tbody>
</table>
3. In-Line Lunghe

Scopo
Questa sequenza motoria è la componente dei movimenti in decelerazione e cambio di direzione prodotti negli esercizi e nelle attività sportive.

Benché il test sia un requisito di movimento e di controllo, fornisce una valutazione rapida della funzionalità delle parti destra e sinistra. Il test è progettato in modo che la posizione assunta dal corpo abbia le stesse sollecitazioni che ci sono durante la rotazione, la decelerazione e i movimenti laterali. A causa di appoggio stretto e della posizione asimmetrica, è richiesta una adeguata e costante dinamica del bacino, anche e del core adominale.

Il test si pone in una posizione asimmetrica in cui il carico è equamente distribuito sulle due gambe, inoltre le estremità inferiori sono in una posizione divaricata sagittale mentre gli arti superiori in posizione opposta, ovvero frontale. Tutto questo porta il centro-bilanciamento naturale dei diversi superiore e inferiori che viene usato per determinare la stabilità della colonna. In aggiunta si sfida la mobilità e la stabilità del piede, della caviglia, del ginocchio e dell'anca e simultaneamente si verifica la flessibilità dei muscoli multi-articolari come grandi e minore e il retto femorale.

Il test In-Line fornisce solo l'osservazione della cadenza e del ritmo, divenendo dal vivo affondo, ma la fase del passo presenterebbe troppe variabili per far parte di uno scrutinio di movimento. La fatica con un base di appoggio ristretta e la posizione delle spine opposta fornisce informazioni sufficienti per trovare un problema di mobilità e stabilità nella sequenza motoria dell'affondo.

Descrizione
E necessario usare il misura della lunghezza della tabia usata precedentemente per il Hurdle step. Si chiede al cliente di tenersi la punta del piede posteriore alla linea di partenza del misuratore, mentre il tallone del piede anteriore viene posto alla punta della tabia basandosi sul lit. Dopo aver posizionato i piedi si afferra la bacchetta e si posiziona dietro la schiena (rimane a contatto con la testa, colonia dorsale e osso sacro).

La mano opposta rispetto alla gamba anteriore deve essere la mano che afferra la bacchetta a livello della colonia e il dorso della mano sta a livello della colonia e il dorso della mano rimane in posizione di partenza. Per eseguire lo schermo il cliente deve allungare la gamba posteriore fino a toccare il centro del misuratore o il terreno e poi ritornare alla posizione iniziale.

Suggerimenti
- La gamba anteriore identifica il lato a cui deve essere assegnato il punteggio
- Non correggere il paziente mentale esegue l'esercizio
- Rimane vicino in caso abbia una perdita di equilibrio
- La bacchetta deve rimanere in posizione verticale e in contatto con la testa, con la colonia toracica e con l'osso sacro durante tutto il movimento
- Il tallone anteriore rimane a contatto con la superficie e il tallone posteriore tocca la superficie quando si torna alla posizione iniziale
- Se il paziente non riesce a toccare il misuratore o la superficie con il ginocchio, dimostra una inabilità completa a svolgere la sequenza motoria, ed è un punteggio 1.
- Ripetere il movimento al massimo 3 volte, ricordarsi da entrambe le parti

Implicazioni dello In-Line Lunghe
La capacità di eseguire il test di affondo in linea richiede la stabilità della gamba, della caviglia, del ginocchio e dell'anca nonché l'apertura abduzione dell'anca a catena cinetica chiusa. La sequenza di In-Line richiede anche la mobilità dell'adduzione dell'anca, della dorsiflessione della caviglia e anche del retto femorale. L'atleta deve inoltre mostrare un equilibrio adeguato a causa dello stress laterale imposto.

Sono diversi i fattori che possono dare uno scarso risultato in questa prestazione. La prima può essere dovuta alla inadeguata mobilità dell'anca sia nella gamba di appoggio che nella gamba che esegue il "passo". In secondo luogo, il ginocchio o la caviglia della gamba che esegue il passo potrebbe non avere la stabilità richiesta mentre l'altra esegue affondo (la stabilità dinamica potrebbe non essere soddisfacente). Infine, uno squilibrio tra una debolezza di adduttori e una tensione degli abduttori in una o entrambe le anche può peggiore la performance. Possono anche esistere limitazioni nella regione toracica della colonia ventrale che possono portare l'atleta ad eseguire scorrettamente il test.

Implicazioni dello In-Line Lunghe

- 3 punti
 - La bacchetta rimane in contatto con i tre punti
 - La bacchetta viene mantenuta in posizione verticale
 - Nessun movimento del tronco è notato
 - La bacchetta e i piedi rimangono sul piano sagittale
 - Il ginocchio tocca il misuratore dista il tallone del piede anteriore
 - Il piede anteriore rimane nella posizione di partenza

- 2 punti
 - La bacchetta rimane in contatto con i tre punti
 - La bacchetta viene mantenuta in posizione verticale
 - Il movimento del tronco è notato
 - La bacchetta e i piedi rimangono sul piano sagittale
 - Il ginocchio non tocca il misuratore
 - Il piede anteriore rimane nella posizione di partenza

- 1 punto
 - È osservata una perdita di equilibrio
 - Impossibilità a completare sequenza motoria
 - Impossibilità di assumere la posizione di partenza

Quando un atleta raggiunge un punteggio inferiore a 3, il fattore limitante deve essere identificato. La documentazione clinica di queste limitazioni può essere ottenuta utilizzando misurazioni di outcome con il goniometro misurando l'ampiezza della articolazione e con test di flessibilità muscolare come il test di Thomas o il test di Kendall per la rigidità o accorciamento dei flessori dell'anca. I test precedenti hanno identificato che quando un atleta raggiunge un punteggio di 2, esistono limitazioni con la mobilità di una o entrambi le anche. Quando un atleta segna un 1 o meno, si suppone che si sia un assieme tra stabilità e mobilità in un anche o entrambe.

PUNTEGGIO PER IN LUNGHE

- 3 punti
 - La bacchetta rimane in contatto con i tre punti
 - La bacchetta viene mantenuta in posizione verticale
 - Nessun movimento del tronco è notato
 - La bacchetta e i piedi rimangono sul piano sagittale
 - Il ginocchio tocca il misuratore dista il tallone del piede anteriore
 - Il piede anteriore rimane nella posizione di partenza

- 2 punti
 - La bacchetta rimane in contatto con i tre punti
 - La bacchetta viene mantenuta in posizione verticale
 - C'è movimento del tronco
 - La bacchetta e i piedi rimangono sul piano sagittale
 - Il ginocchio non tocca il misuratore
 - Il piede anteriore rimane nella posizione di partenza

- 1 punto
 - È osservata una perdita di equilibrio
 - Impossibilità a completare sequenza motoria
 - Impossibilità di assumere la posizione di partenza
4. **Shoulder Mobility**

Scopo
Questa sequenza motoria valuta il range di movimento delle spalle bilaterali, combinando la rotazione interna con l'adduzione e la rotazione esterna con l'abduzione. Il test richiede una normale mobilità scapolare e estensione della colonna vertebrale toracica. Nonostante la sequenza non sia così comune nella attività della vita quotidiana, questa usa ogni segmento al massimo del suo controllo attivo, lasciando poco spazio alle compensazioni. L'impossibilità di uso di movimenti compensatori fornisce quindi un'ampia finestra sulla capacità di movimento. La colonna cervicale e la muscolatura intorno a questa zona dovrebbero rimanere rilassate e la regione toracica dovrebbe avere un'estensione naturale.

Descrizione
Come prima cosa bisogna determinare la lunghezza della mano del paziente, prendendo le misure dalla piega distale del polso alla punta del terzo dito. Il cliente si trova in piedi con i piedi uniti e chiude le due mano a pugno, mettendo il pollice dentro il pugno. Durante il test le mani dovrebbero rimanere a pugno e dovrebbero essere poste sulle spalle in un'unica posizione che comprende la rotazione interna di una spalla, e l'altra una posizione massima di adduzione, estensione e rotazione interna di una spalla. Si misura quindi la distanza tra le due prominenze ossee più vicine. Se il paziente si trova in una posizione iniziale con una flessione della colonna cervicale o arrotondandola, si ferma il test in cui la posizione viene persa, e si prende quel punto da misurare. Eseguire il test di mobilità della spalla fino a 3 volte bilateralmente.

Suggerimenti
- La spalla flessa (quella superiore) identifica il lato in cui deve essere assegnato il punteggio.
- Se la misura della mano è esattamente uguale alla distanza tra i due pugni va assegnato il punteggio più basso.
- Assicurarsi che il paziente non provi ad avvicinare le mani una volta e mezzo la misura della mano.
- Assicurarsi che il paziente non provi ad avvicinare le mani una volta e mezzo la misura della mano.
- Non allineare il movimento; ripeti semplicemente le istruzioni se necessario.
- Chiedere al paziente di non allineare il movimento; ripeti semplicemente le istruzioni se necessario.
- Non interrompere il modello di movimento o il punteggio durante il test.
- Eseguire il test bilateralmente.

Implicazioni della shoulder mobility
Sebbene sia chiaro che l'aumento della rotazione esterna ottenuta a spese della rotazione interna negli atleti che lanciano sopra la testa non è la prima cosa da considerare, la stabilità scapolare dipende dalla mobilità toracica e dovrebbe essere l'obiettivo principale. Il sviluppo eccessivo e l'accorciamento del muscolo piccolo pettorale, del grand dorsale e del muscolo retto dell'addome possono causare di alterazioni posturali alle spalle in avanti o arrotondate. Questo problema posturale è uno svantaggio meccanico sia per l'articolazione gleno-omerale che per la stabilità scapolare. Una disfunzione di scarsa mobilità e stabilità toracica potrebbe essere presente, risultando in una ipomobilità gleno-omerale secondaria. Il test richiede un movimento asimmetrico perché le braccia vanno in posizione opposta, e richiede che le braccia si muovano simultaneamente, a coppiando controllo posturale e stabilità del core.

Clearing exam
Si tratta di un esame ulteriore da eseguire al termine del Shoulder Mobility. È un movimento a cui non viene assegnato un punteggio, ma serve per verificare la presenza o meno di un dolore. Il cliente posiziona un palmo sulla spalla opposta e gira il gomito il più alto possibile mantenendo il contatto palmo a spalla. L'esame di compensazione è necessario perché il conflitto alla spalla a volte non viene rilevato dal test di mobilità della spalla da solo. Se risulta positivo, bisognerà annotare un punteggio pari a zero a tutto il test di mobilità della spalla.

Punteggio per Shoulder Mobility

<table>
<thead>
<tr>
<th>Punteggio</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 punti</td>
<td>I pugni si trovano entro una distanza inferiore rispetto alla misura della mano.</td>
</tr>
<tr>
<td>2 punti</td>
<td>I pugni si trovano entro una distanza inferiore rispetto a una volta e mezzo la misura della mano.</td>
</tr>
<tr>
<td>1 punto</td>
<td>I pugni si trovano al di fuori della distanza rispetto a una volta e mezzo la misura della mano.</td>
</tr>
</tbody>
</table>

Shoulder Clearing Test

Eseguire questo test bilateralmente. Se c'è dolore associato col movimento, associare un punteggio di “0” e fare eseguire una valutazione più approfondita alla spalla da un professionista sanitario adeguato.
5. **Active Straight Leg Raise**

Scopo
Il sollevamento attivo della gamba dritta verifica la flessibilità degli ischiocrurali e del gastrocnemio mantenendo la pelvi stabile e un’estensione attiva della gamba opposta. Nonostante possa sembrare la parte meno funzionale in questo scrutinio, questa prova non identifica solo la mobilità attiva dell’anca flessa, individua la stabilità iniziale e continua del core all’interno della sequenza di movimento, nonché la possibilità di estensione dell’anca opposta. Non è tanto una prova di flessione dell’anca, quanto un modo per valutare la capacità di separare gli arti inferiori in posizione di scarico. Questo movimento viene spesso perso quando la flessibilità di muscoli multi-articolari è compromessa.

Il complesso grande gluteo, bandellotta iliotibiale e ischio-crurali sono le strutture che più facilmente risultano essere i fattori limitanti della flessione delle anche. Mentre la limitazione dell’estensione sono causate spesso dai flessori dell’anca come il ileo-psoas.

Il test testa la flessibilità della catena cinetica posteriore della gamba attiva, mentre si mantiene il bacino stabile e l’anca opposta a quella attiva si trova in estensione.

Descrizione
Il paziente prima assume la posizione di partenza partendo supino con le braccia in una posizione anatomica (palmi rivolti in su e ai lati) e la testa sul pavimento. Il supporto del FMS è postegno sotto le ginocchia. A questo punto si identifica il punto medio tra la spinacia iliaca anteriore anteriore (SIAS) e il punto medio della rotula la bacchetta viene posto in questa posizione perpendicolare al terreno. Successivamente, l'individuo viene istruito a sollevare la gamba con il ginocchio esteso e il piede in posizione neutra. Durante la prova il ginocchio opposto dovrebbe rimanere in contatto con il terreno, la caviglia si trova all'estremità del pavimento. Una volta che la posizione finale è raggiunta, la caviglia rispetto alla bacchetta.

Suggerimenti
- L’anca flessa identifica il lato a cui deve essere assegnato il punteggio
- La gamba che non si muove rimane nella posizione neutra

Implicazioni
La capacità di eseguire il test richiede flessibilità attiva funzionale della catena cinetica posteriore ovvero gli ischiocrurali, che è diversa dalla flessibilità passiva che spesso viene valutata. Inoltre è richiesto un’adeguata mobilità dell’anca e della gamba opposta e la stabilità degli addominali basali. Per eseguire correttamente il test ci deve essere un controllo pelvico sufficiente.

Scarso punteggio durante questo test può essere il risultato di diversi fattori. In primo luogo, l'atleta può avere una scarsa flessibilità funzionale degli ischi. In secondo luogo, l'atleta potrebbe avere una mobilità inadeguata dell’anca opposta, derivante dall’accorciamento dell’ileo-psoas associato a un tilt anteriore della pelvi.

Come il test hurdle step test, questo valuta la flessibilità delle anche, ma è più specifico perché evidenzia la limitazione causata dai muscoli ischio-crurali e dall’ileo-psoas.

PUNTEGGIO PER STRAIGHT LEG RAISE

<table>
<thead>
<tr>
<th>Punteggio</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 punti</td>
<td>La proiezione ortogonale del malleolo si trova tra la metà della coscia e la SIAS, quindi davanti rispetto alla bacchetta</td>
</tr>
<tr>
<td>2 punti</td>
<td>La proiezione ortogonale del malleolo si trova a metà coscia e metà rotula, quindi dietro rispetto alla bacchetta</td>
</tr>
<tr>
<td>1 punto</td>
<td>La proiezione ortogonale del malleolo si trova distalmente rispetto alla rotula</td>
</tr>
<tr>
<td></td>
<td>La gamba che non si muove rimane nella posizione neutra</td>
</tr>
</tbody>
</table>

ALLEGATI
6. Trunk Stability Push-up

Scopo
Il Trunk Stability Push-up è un movimento di sollevamento o spinta del tronco dal pavimento. Il test verifica la capacità di stabilizzare la colonna vertebrale durante un movimento della parte superiore del corpo a catena chiusa. Il test assicura la stabilità del tronco nel piano sagittale mentre viene eseguito un movimento simmetrico dell'arto superiore e inferiore e per evitare la stabilità mossa del core. L'obiettivo è di iniziare il movimento con le estremità superiori, ovvero il movimento di push-up senza consentire il movimento nella colonna vertebrale o delle anche. Solitamente i due movimenti di compenso che vengono messi in atto sono l'estensione e la rotazione.

Descrizione
Il paziente assume una posizione prona con le braccia distese sopra la testa e fa scivolare le mani verso la posizione di partenza (alla lunghezza delle spalle). Durante questo test, uomini e donne hanno diverse posizioni di partenza. Gli uomini iniziano con i polsi all'apice della fronte, mentre le donne iniziano con i polsi a livello del mento. Le ginocchia sono completamente distese, le caviglie in posizione neutra e le puntine dei piedi sono perpendicolari al piano di riflessione. Si chiude il paziente al momento di eseguire un push-up ovvero una fissione da questa posizione. Il corpo dovrrebbe essere sollevato come un'unità, non si dovrebbero osservare oscillazioni o altri movimenti nella colonna vertebrale durante la spinta. Se il paziente non riesce ad eseguire una spiotta nelle posizioni iniziali, le mani vengono abbassate in una posizione più facile (per gli uomini a livello del mento e per le donne a livello della clavicola).

Suggerimenti
- Per identificare la distanza delle spalle per il posizionamento delle mani, allineare il punto medio tra i pollici e l'indice con la linea ascellare, in modo che le mani siano posizionate alla distanza delle spalle.
- Assicurarsi che il soggetto inizi con le braccia distese e sopra la testa e le porte all'altezza delle spalle (stare a un'attrezzatura ad alta velocità se necessario).
- Assicurarsi che la posizione originale delle mani venga mantenuta e che le mani non scivolino verso il basso quando il paziente si prepara a sollevarsi.
- Assicurarsi che il torace/capezzale e lo stomaco si spostino contemporaneamente dal pavimento.
- Non allenare il movimento; ripeti semplicemente le istruzioni se necessario.
- Chiedere se il movimento evoca dolore.
- Non interpretare il modello di movimento o il punteggio durante il test.
- In caso di dubbio dare il punteggio più basso.

Implicazioni
Come già detto il test richiede la stabilità simmetrica del tronco nel piano sagittale durante un movimento simmetrico degli arti superiori. Molti sport richiedono che gli stabilizzatori del tronco trasferiscano la forza simmetricamente dagli arti superiori agli arti inferiori e viceversa. Movimenti come il canestro nella pallacanestro, la schiacciata o ricezione nella pallavolo o lo stop del passaggio del calcio sono esempi comuni di questo tipo di trasferimento di energia. Se il tronco non ha una stabilità adeguata durante queste attività, l'energia cinetica sarà dispersa e porterà a scarpe prestazioni funzionali, oltre che a un maggiore potenziale di danno micro traumatico. Scarze prestazioni durante questo test possono essere attribuite semplicemente alla carenza di forza parziale o complessa oppure a una forza della parte superiore del corpo compromessa. Inoltre, è importante notare che il test non è in grado di eseguire un punteggio adeguato, non una mobilità limitata delle anche e della colonna toracica potrebbero limitare l'abilità dell'individuo di iniziare una posizione iniziale ottimale, portando una prestazione inadeguata durante il test.

Quando un atleta raggiunge un punteggio inferiore a 3, il fattore limitante deve essere identificato. La documentazione clinica di queste limitazioni può essere ottenuta utilizzando il test di Kend Kendall e test di Richardson per la forza addominale e del tronco superiore e inferiore. Tuttavia, il test di Kendall richiede una contrazione concentrica mentre un push-up richiede una reazione di stabilizzazione simmetrica per evitare l'iperestensione. Una contrazione che stabilizza la muscolatura del core è più importante e appropriata di un semplice test di forza, che può essere uno o due muscoli chiave. A questo punto, il deficit muscolare non dovrebbe necessariamente essere diagnosticato.

L'esame di screening implica semplicemente una scarsa stabilità del tronco in presenza di una forza di estensione del tronco, ed è necessario un ulteriore esame in un secondo momento per formulare una diagnosi.

Clearing exam
Un esame di chiarimento viene eseguito alla fine di questo movimento. Il test viene semplicemente eseguito per osservare se c'è una risposta al dolore. Se evoca dolore si marca un + e viene assegnato un punteggio pari a uno per l'intero test push-up.

L'esame di clearing è necessario perché il dolore alla schiena può a volte passare inosservato al di sopra o al di sotto del movimento.

Punteggio per il Trunk Stability Push-up

<table>
<thead>
<tr>
<th>Punteggio</th>
<th>Uomo</th>
<th>Donna</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 punti</td>
<td>🟢 Uomo eseguono una ripetizione con polsi allineati alla parte superiore della fronte.</td>
<td>🟢 Donne con polsi in linea con il mento.</td>
</tr>
<tr>
<td>2 punti</td>
<td>🟢 Uomo eseguono una ripetizione con polsi allineati al mento.</td>
<td>🟢 Donne con polsi in linea alle clavicole.</td>
</tr>
<tr>
<td>1 punto</td>
<td>🟢 Uomo non sono in grado di eseguire una ripetizione con polsi allineati al mento.</td>
<td>🟢 Donne non sono in grado di eseguire una ripetizione con polsi in linea con le clavicole.</td>
</tr>
</tbody>
</table>

Spinal Extension Clearing Test

L'estensione è stabilita eseguendo una spinta dal pavimento con le mani sotto le spalle e il bacino verso il pavimento. Rimanere in questa posizione.

Se c'è dolore associato col movimento, associare un punteggio di "0" e fare eseguire un ulteriore test dell'individuo.
7. Rotatory Stability

Scope
La capacità di eseguire il test richiede una stabilità asimmetrica del tronco in entrambi i piani sia quello sagittale che trasversale durante il movimento asimmetrico degli arti superiori e inferiori. Molte attività funzionali nello sport richiedono che gli stabilizzatori del tronco trasferiscano la forza asimmetricamente dagli arti inferiori agli arti superiori e viceversa. Il test è un movimento complesso che richiede una corretta coordinazione neuromuscolare e il trasferimento di energia da un segmento all'altro del corpo attraverso il tronco. Necessita la stabilità su più piani, stabilità del bacino, del core e del cingolo omero-capsolare durante i movimenti combinati con arti. La sequenza motoria richiama il gattonamento che ha origini nello sviluppo del movimento umano. E in aggiunta rappresenta alcune delle azioni coordinate di mobilità e di stabilità rappresentate nel modello di arrampicata.

Descrizione
L'individuo assume la posizione di partenza in quadrupede con lo strumento misuratore FMS sul pavimento, tra le ginocchia e le mani. Il misuratore dovrebbe essere parallelo alla colonna, alle spalle. Le anche dell'individuo dovrebbero essere a 90° rispetto al busto, le caviglie in posizione neutra e la pianta del piede in dorsiflessione. Le mani e le ginocchia devono essere in contatto con il misuratore FMS. Il paziente deve al tempo stesso fluttuare la spalla e estendere il ginocchio dello stesso lato per poi toccare il ginocchio con il gomito rimanendo allineati sul misuratore. La flessione della colonna è permessa, dato il movimento. L'operazione viene eseguita bilateralmente per un massimo di 3 tentativi, se necessario. Se il punteggio di 3 non è raggiunto al paziente viene chiesto di compiere la prova in diagonale con la spalla e l'anca opposte

Suggerimenti
- Assicurarsi che le spalle che si muovano indici il lato che viene testato
- Assicurarsi che il ginocchio tocchino durante la parte in flessione del movimento
- Assicurarsi che il test venga eseguito per ottenere un punteggio di 3 gli arti rimangano allineati sopra il misuratore FMS
- Assicurarsi che il test venga eseguito per ottenere un punteggio di 2 gli arti rimangano parallelli sopra il misuratore FMS
- Assicurarsi che le spalle, anche siano ad angolo retto rispetto al busto nella posizione iniziale
- Assicurarsi che le spalle, anche siano ad angolo retto rispetto al busto nella posizione iniziale
- Non allineare il movimento; ripeti semplicemente le istruzioni se necessario
- Assicurarsi che per ottenere un punteggio di 2 gli arti rimangano allineati sopra il misuratore FMS
- Assicurarsi che per ottenere un punteggio di 1 gli arti rimangano parallelli o allineati sopra il misuratore FMS
- Assicurarsi che le spalle, anche siano ad angolo retto rispetto al busto nella posizione iniziale
- Non allineare il movimento; ripeti semplicemente le istruzioni se necessario
- Assicurarsi che per ottenere un punteggio di 1 gli arti rimangano parallelli o allineati sopra il misuratore FMS
- Assicurarsi che le spalle, anche siano ad angolo retto rispetto al busto nella posizione iniziale
- Non allineare il movimento; ripeti semplicemente le istruzioni se necessario

Implicazioni
La capacità di eseguire il test richiede una stabilità asimmetrica del tronco in entrambi i piani sia quello sagittale che trasversale durante il movimento asimmetrico degli arti superiori e inferiori. Molte attività funzionali nello sport richiedono che gli stabilizzatori del tronco trasferiscano la forza asimmetricamente dagli arti inferiori agli arti superiori e viceversa. Correre ed esplorazione di toccare con le natiche i talloni e rispettivamente con il petto le cosce. Le mani devono rimanere lontane dal corpo.

Clearing Test
Questo esame di compensazione è necessario perché il dolore alla schiena a volte può non essere rilevato dallo screening del movimento. Si valuta il paziente chiedendo di eseguire una valutazione più approfondita da un professionista sanitario.

Clearing exam
Questo esame di compensazione è necessario perché il dolore alla schiena a volte può non essere rilevato dallo screening del movimento. Si valuta il paziente chiedendo di eseguire una valutazione più approfondita da un professionista sanitario.

Punteggio per il Rotary Stability

<table>
<thead>
<tr>
<th>Punteggio</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 punti</td>
<td>Senza toccare il pavimento, si riesce a far toccare ginocchio e gomito della omo- laterale;</td>
</tr>
<tr>
<td></td>
<td>Capacità di eseguire una corretta ripetizione omolaterale;</td>
</tr>
<tr>
<td></td>
<td>Gli arti iperalaterali rimangono allineati sul supporto.</td>
</tr>
<tr>
<td>2 punti</td>
<td>Senza toccare il pavimento, si riesce a far toccare ginocchio e gomito contro-laterale;</td>
</tr>
<tr>
<td></td>
<td>C'è capacità di eseguire una corretta ripetizione diagonale</td>
</tr>
<tr>
<td></td>
<td>Gli arti contro-laterali si tocano</td>
</tr>
<tr>
<td>1 punto</td>
<td>Incapacità di eseguire una ripetizione diagonale</td>
</tr>
</tbody>
</table>

Spinal Flexion Clearing Test
Rimanere in questa posizione, con la natica sul tallone e la braccia distese alla larghezza delle spalle. Se c'è dolore associato col movimento, associare un punteggio di "0" e fare eseguire una valutazione più approfondita da un professionista sanitario.
9.6 Allegato 6 – Analisi questionari seconda parte

<table>
<thead>
<tr>
<th>Giocatore</th>
<th>Anamnesi remota</th>
<th>Tempo di gioco</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>La sua prima distorsione di caviglia si è verificata nel dicembre 2016 ed è stato fermo 2 giorni. Non viene considerato un infortunio</td>
<td>Tra i 10-20 minuti</td>
</tr>
<tr>
<td>FV</td>
<td>Non si è mai infortunato</td>
<td>Meno di 4 minuti</td>
</tr>
<tr>
<td>TS</td>
<td>T.S. ha la sindrome di Schauermann. In passato il ragazzo ha avuto delle distorsioni in inversione di caviglia sia destra che sinistra. È stato fermo 2-3 settimane e ha eseguito fisioterapia. Ha inoltre lesionato il legamento rotuleo dopo un grande sforzo effettuato in una partita. Anche in questo caso ha eseguito fisioterapia. Nel 2013 si è infortunato per la prima volta a livello lombare in un allenamento e da lì ha continuato ad andare dal chiropratico e dal fisioterapista fino ad oggi. Ogni tanto capita ancora che si blocchi. In passato si è anche infiammata la spalla destra, ma è guarita velocemente</td>
<td>Oltre i 20 minuti</td>
</tr>
<tr>
<td>DA</td>
<td>Nelle stagioni 2009/10, 2011/12 e 2014/15: distorsione caviglia destra (lesione III grado) e recidive. È stato fermo circa un mese. Nel 2013 è fuoriuscita la rotula del ginocchio destro, è stato fermo un mese, dopo la visita medica ha eseguito fisioterapia. Nel 2014 ha avuto una lesione muscolare al gastrocnemio (strappo II grado). È stato fermo 1 mese circa e ha svolto fisioterapia</td>
<td>Oltre i 20 minuti</td>
</tr>
<tr>
<td>OH</td>
<td>Nessun infortunio in passato oltre a quello già descritto</td>
<td>5-10 minuti</td>
</tr>
<tr>
<td>PI</td>
<td>Nessun infortunio in passato oltre a quello già descritto</td>
<td>5-10 minuti</td>
</tr>
<tr>
<td>MM</td>
<td>Nessun infortunio in passato oltre a quello già descritto</td>
<td>Oltre 20 minuti</td>
</tr>
<tr>
<td>YS</td>
<td>Settembre 2017: tendinite al tendine rotuleo, è stato fermo una settimana e ha svolto un ciclo di fisioterapia. Marzo 2017: stiramento II grado flessori anca. È stato fermo 2 settimane e ha svolto fisioterapia. Non sono considerati infortuni</td>
<td>Meno di 5 minuti</td>
</tr>
<tr>
<td>FA</td>
<td>Nel 2016 ha avuto una contusione alla coscia sinistra, è stato fermo 3 giorni e ha svolto fisioterapia</td>
<td>Tra i 5-10 minuti</td>
</tr>
<tr>
<td>AM</td>
<td>Nessun infortunio in passato oltre a quello già descritto</td>
<td>5-10 minuti 10- 20 minuti</td>
</tr>
</tbody>
</table>
9.7 Allegato 7 – Programma di esercizi correttivi

<table>
<thead>
<tr>
<th>1. Foam Roller - Mid Back</th>
<th>Set: 1</th>
<th>Reps: 1</th>
<th>Tempo: 60</th>
<th>Rest: 10</th>
<th>Weight/Intensity</th>
<th>Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2. Foam Roller - Quadriceps</th>
<th>Set: 1</th>
<th>Reps: 1</th>
<th>Tempo: 60</th>
<th>Rest: 10</th>
<th>Weight/Intensity</th>
<th>Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. Foam Roller - Calf Muscle</th>
<th>Set: 1</th>
<th>Reps: 1</th>
<th>Tempo: 60</th>
<th>Rest: 10</th>
<th>Weight/Intensity</th>
<th>Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. Wall Sit With Bilateral Reach</th>
<th>Set: 1</th>
<th>Reps: 1</th>
<th>Tempo: 20</th>
<th>Rest: 5</th>
<th>Weight/Intensity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Bicep Curl Single Arm From Tall Kneeling With One DB</th>
<th>Set: 8</th>
<th>Reps: 8</th>
<th>Tempo: 4</th>
<th>Rest: 30</th>
<th>Weight/Intensity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Single Leg Lowering 2</th>
<th>Set: 10</th>
<th>Reps: 10</th>
<th>Tempo: 5</th>
<th>Rest: 10</th>
<th>Weight/Intensity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Lift From Half Kneeling With Cable Bar</th>
<th>Set: 10</th>
<th>Reps: 10</th>
<th>Tempo: 3</th>
<th>Rest: 30</th>
<th>Weight/Intensity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXERCISE DESCRIPTIONS

Bicep Curl Single Arm from Tall Kneeling with One DB

Begin in a tall kneeling position, a dumbbell in one hand, and a towel for knee comfort. There should be a straight line from the ear, shoulder, hip, and knee in order to achieve proper alignment. Start to perform bicep curls with the weight and maintain proper alignment during the exercise.

Foam Roller - Calf Muscle

Begin exercise in supine position with calf placed directly on the foam roller with both hands supporting body weight. Next, roll the calf across the foam roller from high to low and outside to inside.

Never perform exercise to the point of pain, but make sure that your muscle is feeling just short of the pain threshold as this will help to establish the best mobility in the muscle tissue.

Foam Roller - Mid Back

Begin exercise in supine position with mid-back placed directly on the foam roller with both elbows in front of face and both legs supporting body weight. Next, roll the mid-back across the foam roller from high to low. You may allow the upper back to bend or fold around the foam roller while maintaining your hip height to promote greater thoracic spine mobility (extension). Never perform exercise to the point of pain, but make sure that your muscle is feeling just short of the pain threshold as this will help to establish the best mobility in the muscle tissue.

Foam Roller - Quadriceps

Begin exercise in prone position with quad placed directly on the foam roller with both hands/elbows supporting body weight. Next, roll the quad across the foam roller from high to low and outside to inside. Never perform exercise to the point of pain, but make sure that your muscle is feeling just short of the pain threshold as this will help to establish the best mobility in the muscle tissue. Repeat in the same fashion on the opposite quad.
Lift from Half Kneeling with Cable Bar

Position the arm of the functional trainer at approximately 7 o'clock and 5 o'clock. Place a pad on the floor simply to protect the knees, not to add an unstable surface. Connect the cable bar to the attachment of the arm of the machine. To get into the starting position, face the body in the same line as the support leg of the functional trainer and assume a half kneeling position with the knee closest to the cable placed on the pad.

The posture required for the half kneeling position is accomplished by placing one knee down and one knee up and pointed straight ahead. The lower leg of the down knee is pointed straight back. Do not allow the lower leg to point in or out. Center the weight on the down knee, supported with the up leg, but keep the knee straight under the hip. Do not shift to the front, side or tilt. The toes of the down leg should be tucked underneath with the ankle dorsiflexed. If this position causes discomfort, the toes may be pointed straight back or plantarflexed. The toes tucked underneath will place more of a stretch on the anterior thigh. The pelvis should be positioned so it is flat across the top or slightly tilted back. The down knee is the main support with the up leg acting as a kickstand. The spine should be in a tall position and the shoulders and hips are to remain square. Do not allow them to turn or twist. The head and neck are neutral and relaxed. It is important to note the width of the up foot. Stability and motor control are more challenged with a narrow stance, where the foot of the up leg is in line with the down knee. Therefore, begin in a wide enough stance where stability is challenged but not disrupted. As competency is gained, keep narrowing the stance. The front foot remains light while the movement is being driven from the grounded side.

The lift pattern is a reversal of the chop pattern. Place the palms down on the cable bar with the hand closest to the machine at the bottom of the cable bar and the other hand about 4-6 inches from the top. Pull the cable bar to the center of the chest with the outside arm and then finish with a press of the inside arm. The bar should be kept close to the body during the exercise. The shoulders should have minimal turn. This movement is a total arm motion. Do not flex the hips or lose the tall spine position at any time. Return to the starting position by simply reversing the pattern with the same posture. Perform the movements on both sides.

The lift is a PNF diagonal pattern and is executed from a half kneeling posture when lunging or split stance is faulty. Individuals that are quad and hip flexor dominant will benefit as the position does not allow for anything but appropriate core stability. The half kneeling lift is a static motor control movement with a dynamic upper body that is an investigation of posture, control, stability, and body awareness. This posture precedes higher level split stance and lunging activities.

Single Leg Lowering 2

Lie on back with one hip flexed. While keeping the back flat, tighten your core. Raise and lower one leg while keeping your hips down. Put an object under the foot of the moving leg if zero degrees of hip extension is unattainable without compensation. Work to get the heel to the floor with a neutral pelvis.

Wall Sit with Bilateral Reach

Sit on a platform with the sacrum, lumbar spine, shoulders, and head in contact with the wall. Make sure the knees and hips are flexed with feet together; any object can be placed under the knees to reduce the amount of tension that the hips might experience.

Grab the dowel with both and place it on top of the head so that the elbow joints form a 90 degree angle. While keeping both shoulders in the flexed position and against the wall, begin to extend the arms overhead to a lockout position. During this exercise it is important to maintain all points of contact with the wall.
9.8 Fotografie

Nelle successive fotografie vediamo i giocatori allenarsi nella palestra di Taverne con gli allenamenti proposti da Antonello atti a migliorare i punti carenti dei singoli giocatori e a potenziare e incrementare altre abilità come resistenza, agilità, esplosività e forza.
La foto raffigura due dei quattro giocatori stranieri i quali si sono ritrovati dopo diversi anni a giocare nella stessa squadra e nello stesso paese. Entrambi di nazionalità diversa avevano frequentato lo stesso college WarHawk negli Stati Uniti, per poi perdere i contatti una volta conclusa la formazione. I due ragazzi hanno chiesto di essere immortalati insieme in una fotografia perché questo preciso giorno indossavano la stessa maglietta che raffigura il simbolo del loro college. Si tratta di una fotografia, per me, con un grande significato della parola sport, il quale ha il potere di unire le persone in una piccola famiglia portandoli a condividere emozioni di ogni tipo e ad affrontare diverse difficoltà.
LT approvato in data: